Advanced Complexity Theorie

SS 2011, Exercise Sheet \#7

EXERCISE 10:

a) Recall the n-dimensional discrete Fourier-transform

$$
\mathcal{F}_{n}: \mathbb{C}^{n} \ni\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(\sum_{\ell=0}^{n-1} \exp (2 \pi i \cdot k \cdot \ell / n) \cdot x_{\ell}\right)_{k=0, \ldots, n-1} \in \mathbb{C}^{n}
$$

Show that $\mathcal{F}_{n}\left(\mathcal{F}_{n}^{*}(\vec{x})\right)=n \cdot \vec{x}$ where \mathcal{F}_{n}^{*} denotes its transpose. Conclude $\left|\operatorname{det}\left(\mathcal{F}_{n}\right)\right|=n^{n / 2}$.
b) Look up the (Cooley-Tukey) Fast Fourier Transform algorithm and verify that it yields a straight-line program for \mathcal{F}_{n} over $\mathcal{S}:=\left(\mathbb{C},(),\left(+, \times_{c}: c \in \mathbb{S}^{1}\right)\right)$ of length $\mathcal{O}(n \cdot \log n)$.

EXERCISE 11:

a) Let F denote a field of characteristic $0, X \subseteq F$ of cardinality $K \in \mathbb{N}$, and $p:=\sum_{0 \leq k_{1}, \ldots, k_{n}<K} a_{k_{1}, \ldots, k_{n}} X_{1}^{k_{1}} \cdots X_{n}^{k_{n}} \in F\left[X_{1}, \ldots, X_{n}\right]$ a multivariate polynomial with $p(\vec{x})=0$ for every $x_{1}, \ldots, x_{n} \in X$. Show that this requires $a_{\vec{k}}=0$ for every \vec{k}.
b) Let $X_{0}, \ldots, X_{n-1}, Y_{0}, \ldots, Y_{m-1}$ denote variables. Show that the $2 n+2 m$ elements

$$
1, X_{0}, \ldots, X_{n-1}, Y_{0}, \ldots, Y_{m-1}, \sum_{k=0}^{\ell} X_{k} \cdot Y_{\ell-k} \quad(\ell=0, \ldots, n+m-2)
$$

of $F\left[X_{1}, \ldots, Y_{m}\right]$ are linearly independent over F.
Fix fields $F \subseteq E$ and recall that $x_{1}, \ldots, x_{n} \in E$ are called algebraically dependent (over F) if there exists a non-zero n-variate polynomial $p \in F\left[X_{1}, \ldots, X_{n}\right]$ such that $p\left(x_{1}, \ldots, x_{n}\right)=0$. A set is algebraically independent over F if no finite subset is algebraically dependent over F. The transcendence degree over F of a set $S \subseteq E$, $\operatorname{trdeg}_{F}(S)$, denotes the cardinality of a largest subset of S algebraically independent over F.

EXERCISE 12:

Recall that S is algebraic over F iff every $e \in S$ is the root of some $0 \neq p \in F[X]$; equivalently: $F(e)$ has finite dimension as an F-vectorspace.
a) Show that $\operatorname{trdeg}_{F}(S)$ coincides with the least cardinality of a subset $T \subseteq S$ such that S is algebraic over $F(T)$.
(You may restrict to the case $\operatorname{trdeg}_{F}(S)<\infty \ldots$)
b) Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in E$ such that each y_{j} is algebraic over $F\left(x_{1}, \ldots, x_{n}\right)$ and $z \in E$ is algebraic over $F\left(y_{1}, \ldots, y_{m}\right)$. Show that z is algebraic over $F\left(x_{1}, \ldots, x_{n}\right)$.
c) For a further field $G \subseteq F$, conclude $\operatorname{trdeg}_{G}(E)=\operatorname{trdeg}_{F}(E)+\operatorname{trdeg}_{G}(F)$.
d) Determine the transcendence degree of \mathbb{C} over \mathbb{R} and that of \mathbb{R} over \mathbb{Q}.
e) Suppose F has characteristic 0 and consider the set $E:=F\left(X_{1}, \ldots, X_{n}\right)$ of n-variate rational functions. Determine its transcendence degree over F. What happens in finite characteristic?
f) Is $\{\pi, e\}$ algebraically dependent over \mathbb{Q} or not?

