Advanced Complexity Theorie

SS 2011, Exercise Sheet #7

EXERCISE 10:

a) Recall the *n*-dimensional discrete Fourier-transform

$$\mathcal{F}_n: \mathbb{C}^n \ni (x_0, \dots, x_{n-1}) \mapsto \left(\sum_{\ell=0}^{n-1} \exp(2\pi i \cdot k \cdot \ell/n) \cdot x_\ell\right)_{k=0,\dots,n-1} \in \mathbb{C}^n$$

Show that $\mathcal{F}_n(\mathcal{F}_n^*(\vec{x})) = n \cdot \vec{x}$ where \mathcal{F}_n^* denotes its transpose. Conclude $|\det(\mathcal{F}_n)| = n^{n/2}$.

b) Look up the (Cooley-Tukey) *Fast Fourier Transform* algorithm and verify that it yields a straight-line program for \mathcal{F}_n over $\mathcal{S} := (\mathbb{C}, (), (+, \times_c : c \in \mathbb{S}^1))$ of length $\mathcal{O}(n \cdot \log n)$.

EXERCISE 11:

- a) Let *F* denote a field of characteristic 0, $X \subseteq F$ of cardinality $K \in \mathbb{N}$, and $p := \sum_{0 \le k_1, \dots, k_n < K} a_{k_1, \dots, k_n} X_1^{k_1} \cdots X_n^{k_n} \in F[X_1, \dots, X_n]$ a multivariate polynomial with $p(\vec{x}) = 0$ for every $x_1, \dots, x_n \in X$. Show that this requires $a_{\vec{k}} = 0$ for every \vec{k} .
- b) Let $X_0, \ldots, X_{n-1}, Y_0, \ldots, Y_{m-1}$ denote variables. Show that the 2n + 2m elements

1,
$$X_0, \dots, X_{n-1}, Y_0, \dots, Y_{m-1}, \sum_{k=0}^{\ell} X_k \cdot Y_{\ell-k}$$
 $(\ell = 0, \dots, n+m-2)$

of $F[X_1, \ldots, Y_m]$ are linearly independent over F.

Fix fields $F \subseteq E$ and recall that $x_1, \ldots, x_n \in E$ are called *algebraically dependent* (over *F*) if there exists a non-zero *n*-variate polynomial $p \in F[X_1, \ldots, X_n]$ such that $p(x_1, \ldots, x_n) = 0$. A set is algebraically *in*dependent over *F* if no finite subset is algebraically dependent over *F*. The *transcendence degree* over *F* of a set $S \subseteq E$, trdeg_{*F*}(*S*), denotes the cardinality of a largest subset of *S* algebraically independent over *F*.

EXERCISE 12:

Recall that *S* is algebraic over *F* iff every $e \in S$ is the root of some $0 \neq p \in F[X]$; equivalently: F(e) has finite dimension as an *F*-vectorspace.

- a) Show that $\operatorname{trdeg}_F(S)$ coincides with the least cardinality of a subset $T \subseteq S$ such that *S* is algebraic over F(T). (You may restrict to the case $\operatorname{trdeg}_F(S) < \infty \dots$)
- b) Let $x_1, \ldots, x_n, y_1, \ldots, y_m \in E$ such that each y_j is algebraic over $F(x_1, \ldots, x_n)$ and $z \in E$ is algebraic over $F(y_1, \ldots, y_m)$. Show that z is algebraic over $F(x_1, \ldots, x_n)$.
- c) For a further field $G \subseteq F$, conclude $\operatorname{trdeg}_G(E) = \operatorname{trdeg}_F(E) + \operatorname{trdeg}_G(F)$.
- d) Determine the transcendence degree of \mathbb{C} over \mathbb{R} and that of \mathbb{R} over \mathbb{Q} .
- e) Suppose *F* has characteristic 0 and consider the set $E := F(X_1, ..., X_n)$ of *n*-variate rational functions. Determine its transcendence degree over *F*. What happens in finite characteristic?
- f) Is $\{\pi, e\}$ algebraically dependent over \mathbb{Q} or not?