Advanced Complexity Theorie

SS 2011, Exercise Sheet #6

EXERCISE 9:

- a) Show that Proposition 5.3b) in the script is optimal.
- b) Compare the straight-line complexity of $2^n 1$ over $(\mathbb{N}, (1), (+))$ with that over $(\mathbb{N}, (1), (+, -))$.
- c) Prove that any straight-line program computing $N \in \mathbb{N}$ over $(\mathbb{N}, (1), (+, -, \times))$ has length at least $\log_2 \log_2 N$.
- d) Is Claim c) asymptotically optimal? Prove or improve!
- e) Let $S = (S, (c_i)_{i \in I}, (f_j)_{j \in J})$ be a structure of finite signature. Bound the number of straight-line programs over S of length N in *n* variables asymptotically as $N \to \infty$.
- f) Can *every* $N \in \mathbb{N}$ be computed by a straight-line program over $(\mathbb{N}, (1), (+, -, \times))$ of length $\mathcal{O}(\log_2 \log_2 N)$? Prove or disprove!