Advanced Complexity Theorie

SS 2011, Exercise Sheet #2

EXERCISE 3:

For $n \le m \in \mathbb{N}$, consider the directed acyclic harp graph depicted in Figure a) below. Prove:

- a) It can be played with 3 markers in $O(n \cdot m)$ steps
- b) It can be played with n + 1 markers in $\mathcal{O}(n + m)$ steps
- c) It can be played with $3 \le k \le n+1$ markers in $O\left(\frac{n \cdot m}{k-2}\right)$ steps
- d) It cannot be played with 3 markers in asymptotically less than $n \cdot m$ steps.

a) Harp graph for n = 6 and m = 9;

b) Illustrating the planar separator theorem.

A graph (V, E) is called planar if it can be drawn in the plane with (not necessarily straight-line) edges intersecting only in the vertices they are incident to.

The Planar Separator Theorem (Lipton, Tarjan, SIAM J.Appl.Math. 1979) asserts that every planar (V, E) admits a partition $V = L \uplus M \uplus R$ such that there are no edges between *L* and *R* (see Figure b), and $|L|, |R| \le \frac{2}{3} \cdot |V|$, and $|M| \le \sqrt{8 \cdot |V|}$.

EXERCISE 4:

- a) Argue that the complete graph on four vertices is planar but the complete graph on fives vertices is not.
- b) Let $P_{\ell}(n)$ denote the least number of pebbles sufficient to play *every* planar DAG on *n* vertices with indegree at most ℓ . Prove $P_{\ell}(n) \le P(\frac{2}{3}n) + \ell + \sqrt{8n}$.