Advanced Complexity Theorie

SS 2011, Exercise Sheet #1

EXERCISE 1:

Let $L := \{ \vec{x} \ 0^{|\vec{x}|} \ \vec{x} : \vec{x} \in \Sigma^* \}.$

- a) Describe a 1-tape Turing machine deciding *L* in time $O(n^2)$.
- b) Describe a 2-tape Turing machine deciding *L* in time O(n).

EXERCISE 2:

- a) Describe a sequence \vec{x}_n of binary strings of length $|\vec{x}_n| = n$ with $K(\vec{x}_n) \le \mathcal{O}(\log |\vec{x}_n|)$. How about \vec{x} with $K(\vec{x}) \le \mathcal{O}(\log \log |\vec{x}|)$?
- b) Prove that, asymptotically, 'almost every' binary string of length *n* has Kolmogorov Complexity at least n/2. Determine the complexity of a random binary string of length *n* as $n \to \infty$.
- c) It is not known whether transcendental number π is normal (with respect to base 2, say). Let $\vec{x}_n = (1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, ...) \in \{0, 1\}^n$ denote the sequence of the first *n* binary digits of π . Estimate the Kolmogorov Complexity of \vec{x}_n i) in case π is normal, and ii) in case it is not.
- d) Let $r \in [0, 1)$ denote an arbitrary real number and \vec{x}_n the sequence of the first *n* binary digits of *r* and \vec{y}_n the sequence of the first *n decimal* digits of *r*, each separately encoded in binary.

Compare the Kolmogorov Complexity of \vec{x}_n with that of \vec{y}_n up to an additive constant independent of *n*.

Would you prefer this lecture and/or exercises to be moved to a different date? Please indicate your preferences at doodle.de/68qe9ygftr7av66t