Advanced Complexity Theorie

SS 2011, Exercise Sheet \#1

EXERCISE 1:

Let $L:=\left\{\vec{x} 0^{|\vec{x}|} \vec{x}: \vec{x} \in \Sigma^{*}\right\}$.
a) Describe a 1-tape Turing machine deciding L in time $\mathcal{O}\left(n^{2}\right)$.
b) Describe a 2-tape Turing machine deciding L in time $\mathcal{O}(n)$.

EXERCISE 2:

a) Describe a sequence \vec{x}_{n} of binary strings of length $\left|\vec{x}_{n}\right|=n$ with $K\left(\vec{x}_{n}\right) \leq \mathcal{O}\left(\log \left|\vec{x}_{n}\right|\right)$. How about \vec{x} with $K(\vec{x}) \leq \mathcal{O}(\log \log |\vec{x}|)$?
b) Prove that, asymptotically, 'almost every' binary string of length n has Kolmogorov Complexity at least $n / 2$. Determine the complexity of a random binary string of length n as $n \rightarrow \infty$.
c) It is not known whether transcendental number π is normal (with respect to base 2 , say). Let $\vec{x}_{n}=(1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0, \ldots) \in\{0,1\}^{n}$ denote the sequence of the first n binary digits of π. Estimate the Kolmogorov Complexity of \vec{x}_{n} i) in case π is normal, and ii) in case it is not.
d) Let $r \in[0,1)$ denote an arbitrary real number and \vec{x}_{n} the sequence of the first n binary digits of r and \vec{y}_{n} the sequence of the first n decimal digits of r, each separately encoded in binary.

Compare the Kolmogorov Complexity of \vec{x}_{n} with that of \vec{y}_{n} up to an additive constant independent of n.

[^0]
[^0]: Would you prefer this lecture and/or exercises to be moved to a different date?
 Please indicate your preferences at doodle.de/68qe9ygftr7av66t

