Lineare Algebra II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Kollross Susanne Kürsten **Tristan Alex**

SS 2011 20./21. April 2011

М	ı	n	ľ	t	e	5	t

Aufgabe M1 (I	(Determinate
---------------	--------------

elc	he der folgenden Behauptungen sind wahr?
	Eine Matrix, deren Einträge auf der Hauptdiagonalen alle Null sind hat die Determinante Null.
	Vertauscht man bei einer Matrix zwei Zeilen, so ändert sich die Determinate nicht.
	Es sei A eine 3×3 Blockdiagonalmatrix mit zwei Blöcken. Außerdem seien die Einträge auf der Hauptdiagonalen Null. Dann ist det $A = 0$.
	Sei $\varphi:V\to V$ ein Endomorphismus und B eine Basis von V . Dann ist die Determinate der Matrix $[\varphi]_B$ unabhäbgig von der Wehl der Basis P

Lösung: Die ersten beiden Aussagen sind falsch, die letzten beiden wahr.

Aufgabe M2 (Eigenwerte und Eigenvektoren)

Welche der folgenden Behauptungen sind wahr?

 \square Es sei $\varphi:V\to V$ ein Endomorphismus eines n-dimensionalen Vektorraums V, der n Eigenvektoren zu n verschiedenen Eigenwerten besitzt.

Dann gibt es eine Basis von V, bezüglich der die Matrix von φ eine Diagonalmatrix ist.

- \square Es seien v, w zwei verschiedene Eigenvektoren einer Matrix A. Dann sind v und w linear unabhängig.
- \square Sei $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ die Nullabbildung. Dann ist φ diagonalisierbar.
- \square Sei $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ eine Drehung um den Koordinatenursprung um einen Winkel, der kein ganzzahliges Vielfaches von π ist. Dann ist φ diagonalisierbar.
- \square Sei $\varphi:\mathbb{R}^2\to\mathbb{R}^2$ eine Drehung um den Koordinatenursprung um den Winkel π oder 2π . Dann ist φ diagonalisierbar.

Lösung: Die erste, dritte und fünfte Aussage ist wahr. Die anderen beiden sind falsch.

Gruppenübung

Aufgabe G1 (Eigenwerte und Eigenräume)

- (a) Sei A eine quadratische Matrix über \mathbb{R} . Beweisen oder widerlegen Sie, dass A und A^T die gleichen Eigenwerte haben.
- (b) Beweisen oder widerlegen Sie, dass A und A^T die gleichen Eigenräume haben.

Lösung:

(a) Sei λ ein Eigenwert von A. Dann ist $\det(A - \lambda E) = 0$. Da die Determinante invariant bzgl. Transponieren ist, gilt damit

$$\det(A - \lambda E)^T = \det(A - \lambda E) = 0.$$

Es ist $(A - \lambda E)^T = A^T - (\lambda E)^T = A^T - \lambda E$. Somit ist

$$\det(A^{T} - \lambda E) = \det(A - \lambda E)^{T} = 0$$

und λ ist auch Eigenwert von A^T .

Da $(A^T)^T = A$ gilt, folgt daraus, dass A und A^T die gleichen Eigenwerte haben.

(b) Die Aussage lässt sich durch folgendes Gegenbeispiel wiederlegen.

$$A := \left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right),$$

dann gilt

$$\det(A - \lambda E) = \det\begin{pmatrix} 1 - \lambda & 2 \\ 3 & -\lambda \end{pmatrix} = (1 - \lambda)(-\lambda) - 6 = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2)$$

und die Eigenwerte von A sind $\lambda_1 = 3$ und $\lambda_2 = -2$. Zu diesen gehören die Eigenräume

$$U_{\lambda_1} = \left\{ \alpha \left(\begin{array}{c} 1 \\ 1 \end{array} \right) : \alpha \in \mathbb{R} \right\}, \quad U_{\lambda_2} = \left\{ \alpha \left(\begin{array}{c} -2 \\ 3 \end{array} \right) : \alpha \in \mathbb{R} \right\}.$$

Wegen (a) hat

$$A^T = \left(\begin{array}{cc} 1 & 3 \\ 2 & 0 \end{array}\right)$$

auch die Eigenwerte $\lambda_1=3$ und $\lambda_2=-2$, aber die zugehörigen Eigenräume sind

$$U_{\lambda_1} = \left\{ \alpha \left(\begin{array}{c} -3 \\ -2 \end{array} \right) : \alpha \in \mathbb{R} \right\}, \quad U_{\lambda_2} = \left\{ \alpha \left(\begin{array}{c} -1 \\ 1 \end{array} \right) : \alpha \in \mathbb{R} \right\}.$$

Also haben A und A^T nicht die gleichen Eigenräume.

Aufgabe G2 (Eigenwerte)

Sei V ein Vektorraum und $\varphi: V \to V$ ein Endomorphismus mit $\varphi^2 = \varphi$.

- (a) Zeigen Sie, dass φ keine von 0 und 1 verschiedenen Eigenwerte haben kann.
- (b) Wieviele Endomorphismen $\varphi: V \to V$ mit $\varphi^2 = \varphi$ gibt es, die *nur* den Eigenwert 0 haben.
- (c) Wieviele Endomorphismen $\varphi: V \to V$ mit $\varphi^2 = \varphi$ gibt es, die *nur* den Eigenwert 1 haben.

Lösung:

(a) Für einen Eigenwert λ mit Eigenvektor $\nu \neq 0$ gilt wegen $\varphi^2 = \varphi$

$$\lambda v = \varphi(v) = \varphi(\varphi(v)) = \varphi(\lambda v) = \lambda \varphi(v) = \lambda^2 v$$
.

Es folgt $\lambda = \lambda^2$, also $\lambda = 0$ oder $\lambda = 1$.

- (b) Für jeden Vektor $v \in V$ gilt $\varphi(\varphi(v)) = \varphi(v)$, d.h. $w := \varphi(v)$ ist entweder gleich Null oder ein Eigenvektor von φ zum Eigenwert 1. Besitzt φ also nur den Eigenwert 0, so muss $\varphi(v) = 0$ für jeden Vektor $v \in V$ gelten. Es gibt deshalb nur eine solche Abbildung, die Nullabbildung.
- (c) Für jeden Vektor $v \in V$ gilt $\varphi(v \varphi(v)) = 0$, d.h. $w := v \varphi(v)$ ist entweder gleich Null oder ein Eigenvektor von φ zum Eigenwert 0. Besitzt φ also nur den Eigenwert 1, so muss $v \varphi(v) = 0$ für jeden Vektor $v \in V$ gelten. Es gibt deshalb nur eine solche Abbildung, die Identität.

Aufgabe G3 (Eigenwerte)

- (a) Sei V ein Vektorraum und $\varphi: V \to V$ ein Endomorphismus, so dass $\varphi^2 = \varphi \circ \varphi$ den Eigenwert 1 hat. Sei $v \in V$ ein zugehöriger Eigenvektor von φ^2 , der kein Eigenvektor von φ ist. Zeigen Sie, dass φ die Eigenwerte 1 und -1 hat.
- (b) Sei V ein Vektorraum und $\varphi: V \to V$ eine lineare Abbildung, so dass -1 ein Eigenwert von $\varphi^2 + \varphi$ ist. Zeigen Sie, dass φ^3 den Eigenwert 1 hat.

Lösung:

(a) Betrachte die Vektoren $w_+ := v + \varphi(v)$ und $w_- := v - \varphi(v)$. Weil v kein Eigenvektor von φ ist, sind w_+ und w_- von Null verschieden. Weiter gilt

$$\varphi(w_{+}) = \varphi(v) + \varphi^{2}(v) = \varphi(v) + v = w_{+},$$
 $\varphi(w_{-}) = \varphi(v) - \varphi^{2}(v) = \varphi(v) - v = -w_{-},$

d.h. w_+ bzw. w_- sind Eigenvektoren von φ zum Eigenwert 1 bzw. -1.

(b) Sei $0 \neq v \in V$ ein Eigenvektor von $\varphi^2 + \varphi$ zum Eigenwert -1. Dann gilt $\varphi^2(v) + \varphi(v) + v = 0$ und somit

$$0 = \varphi(\varphi^2(v) + \varphi(v) + v) = \varphi^3(v) + \varphi^2(v) + \varphi(v) = \varphi^3(v) - v,$$

d.h. ν ist ein Eigenvektor von φ^3 zum Eigenwert 1.

Hausübung

Aufgabe H1 (Inverse Matrix)

Es seien A und B jeweils $n \times n$ Matrizen. Außerdem soll $A \cdot B = E_n$ gelten.

- (a) Zeigen Sie, dass dann auch $B \cdot A = E_n$ gilt.
- (b) Zeigen Sie, dass $A^{-1} = B$ und $B^{-1} = A$ ist.

Lösung:

(a) Angenommen es gilt $\det B = 0$.

Dann folgt

$$1 = \det E_n = \det(A \cdot B) = \det A \cdot \det B = \det A \cdot 0 = 0,$$

was ein Widerspruch ist. D.h. es gilt

$$\det B \neq 0$$
.

Insbesondere existiert B^{-1} . Multipliziert man nun die gegebene Gleichung $A \cdot B = E_n$ von links mit B erhält man

$$B \cdot A \cdot B = B$$
.

Durch Multiplikation mit B^{-1} von rechts erhält man daraus

$$B \cdot A = B \cdot A \cdot B \cdot B^{-1} = B \cdot B^{-1} = E_n.$$

w.z.b.w.

(b) Wegen (a) gilt

$$A \cdot B = B \cdot A = E_n$$
.

Nach Definition bedeutet dies gerade

$$A^{-1} = B$$
 und $B^{-1} = A$.

Aufgabe H2 (Eigenwerte und Eigenvektoren)

Bestimmen Sie alle Eigenwerte und Eigenvektoren der folgenden Matrizen.

(a)

$$A = \left(\begin{array}{rrr} -1 & -3 & -3 \\ -2 & -1 & -2 \\ 2 & 3 & 4 \end{array} \right).$$

(b)

$$B = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -6 & 3 & -1 \\ 6 & -2 & 2 \end{array}\right).$$

Lösung:

(a) Es gilt

$$\det(A - \lambda E) = \det\begin{pmatrix} -1 - \lambda & -3 & -3 \\ -2 & -1 - \lambda & -2 \\ 2 & 3 & 4 - \lambda \end{pmatrix} = \det\begin{pmatrix} -1 - \lambda & -3 & -3 \\ -2 & -1 - \lambda & -2 \\ 0 & 2 - \lambda & 2 - \lambda \end{pmatrix}$$
$$= (-1 - \lambda) \cdot ((-1 - \lambda)(2 - \lambda) + 2(2 - \lambda)) + 2 \cdot (-3(2 - \lambda) + 3(2 - \lambda))$$
$$= -(2 - \lambda)(1 + \lambda)(1 - \lambda).$$

Die Eigenwerte von A sind die Nullstellen dieses Polynoms, also $\lambda_1 = -1$, $\lambda_2 = 1$ und $\lambda_3 = 2$. Die zu λ_i gehörenden Eigenvektoren ergeben sich als Lösung der Gleichungssysteme $(A - \lambda_i E)v_i = 0$, i = 1, 2, 3. Zu beachten ist noch, dass der Nullvektor per Definition nie ein Eigenvektor ist. $\lambda_1 = -1$: In diesem Fall ist $(A + E)v_1 = 0$ zu lösen.

$$\left(\begin{array}{ccc|c}
0 & -3 & -3 & 0 \\
-2 & 0 & -2 & 0 \\
2 & 3 & 5 & 0
\end{array}\right) \leadsto \left(\begin{array}{ccc|c}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Also sind

$$\nu_1 = \mu \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \text{ mit } \mu \in \mathbb{R} - \{0\}.$$

die Eigenvektoren von A zum Eigenwert -1.

 $\lambda_2 = 1$: Hier ist $(A - E)v_2 = 0$ zu lösen.

$$\left(\begin{array}{ccc|c}
-2 & -3 & -3 & 0 \\
-2 & -2 & -2 & 0 \\
2 & 3 & 3 & 0
\end{array}\right)
\longrightarrow
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Somit sind

$$v_2 = \mu \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \text{ mit } \mu \in \mathbb{R} - \{0\}.$$

die Eigenvektoren von A zum Eigenwert 1.

 $\lambda_3 = 2$: Jetzt ist $(A - 2E)v_3 = 0$ zu betrachten.

$$\left(\begin{array}{ccc|c}
-3 & -3 & -3 & 0 \\
-2 & -3 & -2 & 0 \\
2 & 3 & 2 & 0
\end{array}\right) \leadsto \left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Also sind

$$v_3 = \mu \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ mit } \mu \in \mathbb{R} - \{0\}.$$

die Eigenvektoren von A zum Eigenwert 2.

(b) Es gilt

$$\det(B - \lambda E) = \det \begin{pmatrix} 1 - \lambda & 1 & 1 \\ -6 & 3 - \lambda & -1 \\ 6 & -2 & 2 - \lambda \end{pmatrix} = \det \begin{pmatrix} 1 - \lambda & 1 & 0 \\ -6 & 3 - \lambda & -4 + \lambda \\ 6 & -2 & 4 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)((4 - \lambda)(3 - \lambda - 2)) - 0 = (4 - \lambda)(1 - \lambda)^{2}.$$

Die Eigenwerte von B sind gerade die Nullstellen dieses Polynoms, also $\lambda_1=4$ und $\lambda_2=1$. Analog zu Aufgabenteil (a) erhält man aus

dass

$$\mu \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \text{ mit } \mu \in \mathbb{R} - \{0\}$$

die Eigenvektoren von B zum Eigenwert 4 sind.

Aus

$$\left(\begin{array}{ccc}
0 & 1 & 1 \\
-6 & 2 & -1 \\
6 & -2 & 1
\end{array}\right) \leadsto \left(\begin{array}{ccc}
0 & 1 & 1 \\
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)$$

folgt, dass

$$\mu \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \text{ mit } \mu \in \mathbb{R} - \{0\}$$

die Eigenvektoren von B zum Eigenwert 1 sind.

Aufgabe H3 (Nilpotente Matrizen)

Es sei A eine $n \times n$ Matrix und $r \in \mathbb{N}$ mit

$$A^r = 0$$
 und $A^{r-1} \neq 0$.

Dabei sei $A^0 = E_n$.

- (a) Welche Eigenwerte hat *A*? Beweisen Sie ihre Antwort. Geben Sie dabei auch an, wie man (in Abhängigkeit von *A* und *r*) einen zugehörigen Eigenvektor bestimmen kann.
- (b) Unter welchen Bedingungen ist A diagonalisierbar?

Lösung:

(a) Angenommen λ ist ein Eigenwert von A. Dann gibt es einen Vektor $\nu \neq 0$ mit $A\nu = \lambda \nu$. Daraus folgt

$$0 = A^r \nu = A^{r-1}(\lambda \nu) = \lambda \cdot A^{r-1} \nu = \ldots = \lambda^r \nu.$$

Da ν nicht Null ist folgt hieraus $\lambda = 0$.

D.h. A kann nie einen von Null verschiedenen Eigenwert haben.

Da $A^{r-1} \neq 0$ gilt, gibt es einen Vektor v mit $A^{r-1}v \neq 0$ Außerdem gilt

$$A(A^{r-1}v) = A^r v = 0 = 0 \cdot v$$
.

D.h. $A^{r-1}v$ ist ein Eigenvektor von A zum Eigenwert Null.

D.h. A hat immer genau einen Eigenwert und dieser ist Null.

(b) A ist genau dann diagonalisierbar, wenn es eine Basis aus Eigenvektoren von A zum Eigenwert Null gibt. Dies ist (wegen der Linearität von A) genau dann der Fall, wenn A = 0 gilt.