

WS 08/09

14. - 19.11.08

Mathematik I für MB Ergebnisblatt

5. Übung

Wiederholungsaufgaben

Aufgabe W9 (Exponentialfunktion und Wachstum)

Eine Population der Anfangsgröße y(0)=1000 habe eine tägliche Wachstumsrate von 10%. Das Wachstum verlaufe nach dem Gesetz

$$y(t) = m_0 e^{ct}$$
,

für eine Konstante $m_0 \in \mathbb{R}$.

- (i) $m_0 = 1000$.
- (ii) y(1) = 1100.
- (iii) $c = \ln(1, 1)$.
- (iv) $y(10) = 1000 \cdot 1, 1^{10} \approx 2594.$
- (v) Nach 8 Tagen hat sich die Population verdoppelt. (Man erhält den Wert 7,27 als Ergebnis und muss auf ganze Tage aufrunden.)

Präsenzaufgaben

Aufgabe P13 (Inverse Matrix)

Berechnen Sie zu folgenden Matrizen jeweils die inverse Matrix.

(i)
$$A^{-1} = \begin{pmatrix} 0 & -1/2 \\ 1/3 & 1/6 \end{pmatrix}$$
 (ii) $B^{-1} = \begin{pmatrix} 4 & -1 & 2 \\ -6 & 2 & -3 \\ 3 & -1 & 2 \end{pmatrix}$ (iii) $C = \begin{pmatrix} 1/3 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/27 \end{pmatrix}$

Aufgabe P14 (Lineares Gleichungssystem in \mathbb{R}^3)

Gegeben sei folgendes lineares Gleichungssystem:

$$2x + 2y - b_1 = 0$$
$$4x + y + 3z - b_2 = 0$$
$$-y + 3z = b_3.$$

(i)
$$A := \begin{pmatrix} 2 & 2 & 0 \\ 4 & 1 & 3 \\ 0 & -1 & 3 \end{pmatrix}, \quad \vec{b} := (b_1, b_2, b_3)^T.$$

- (ii) $\det(A) = -12$. Da die Determinante $\neq 0$ ist, ist das Gleichungssystem $A\vec{x} = \vec{b}$ eindeutig lösbar für alle $\vec{b} \in \mathbb{R}^3$.
- (iii) Die Inverse von A ist

$$A^{-1} = \begin{pmatrix} -1/2 & 1/2 & -1/2 \\ 1 & -1/2 & 1/2 \\ 1/3 & -1/6 & 1/2 \end{pmatrix}.$$

(iv) Allgemein löst man das Gleichungssystem indem man $\vec{x} = A^{-1}\vec{b}$ berechnet. Für $\vec{b} = (6.3, 10)^T$:

$$A^{-1}\vec{b} = (-13/2, 19/2, 13/2)^T.$$

Aufgabe P15 (Transponieren und Invertieren)

Zeigen Sie, dass folgende Rechenregeln gelten:

(i) Behauptung: $(AB)^T = B^T A^T$.

Beweis: Wir schreiben $A = (a_{ij})_{\substack{i=1...n \ j=1...m}}$ und $B = (b_{ij})_{\substack{i=1...m \ j=1...m}}$, d.h. a_{ij} sind die Einträge der $n \times m$ -Matrix A und b_{ij} die Einträge der $m \times n$ -Matrix B. Der erste Index gibt die Zeile an und der zweite Index die Spalte. Also ist $A^T = (a_{ji})$ und $B^T = (b_{ji})$. Dann sind die Einträge des Produkts AB gegeben durch

$$AB = \left(\sum_{k=1}^{m} a_{ik} b_{kj}\right).$$

Damit sieht man, dass die Einträge von $(AB)^T$ (man muss Zeilen und Spalten vertauschen, also den Index i mit dem Index j vertauschen) gegeben sind durch

$$(AB)^T = \left(\sum_{k=1}^m a_{jk} b_{ki}\right) = \left(\sum_{k=1}^m b_{ki} a_{jk}\right).$$

Auf der anderen Seite, da $A^T = (a_{ji})$ und $B^T = (b_{ji})$ hat man

$$B^T A^T = \left(\sum_{k=1}^m b_{ki} a_{jk}\right).$$

Damit folgt die Gleichheit.

(ii) Behauptung: $(A^{-1})^T = (A^T)^{-1}$. Beweis: Zu zeigen ist $(A^{-1})^T (A^T) = E_n$.

Aus Aufgabenteil (i) folgt:

$$(A^{-1})^T (A^T) = (AA^{-1})^T = E_n^T = E_n.$$

(iii) Behauptung: $(AB)^{-1} = B^{-1}A^{-1}$.

Beweis: Zu zeigen ist $(AB)(B^{-1}A^{-1}) = E_n$.

Aus dem Assoziativgesetz für die Matrizenmultiplikation folgt $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} =$ $AA^{-1} = E_n$.

Hausaufgaben

Aufgabe H13 (Kreuzprodukt) (2 Punkte)

$$\vec{x} \times \vec{y} = (0, 0, ad - bc)^T$$
.

Der dritte Eintrag ist gleich det(A), wobei

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Aufgabe H14 (Inverse Matrizen) (3 × 2 Punkte)

Berechnen Sie zu folgenden Matrizen jeweils die inverse Matrix.

(i)
$$A^{-1} = \begin{pmatrix} -1/4 & 0 & 7/4 \\ 1/4 & 0 & -3/4 \\ -1/2 & 1 & 7/2 \end{pmatrix}$$
 (ii) $B^{-1} = \begin{pmatrix} 1 & 1/2 & -5/8 \\ 0 & 1/2 & -3/8 \\ 0 & 0 & 1/4 \end{pmatrix}$ (iii) $C^{-1} = \frac{1}{\det(C)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Die Matrix C ist invertierbar, genau dann, wenn $det(C) = ad - bc \neq 0$ ist.

Aufgabe H15 (Rechenregeln) (6 Punkte) Seien $A, B \in \mathbb{R}^{n \times n}$ beliebige quadratische Matrizen. Entscheiden Sie für jede der folgenden Aussagen, ob sie im Allgemeinen wahr oder falsch sind. Geben Sie zu jeder falschen Aussage ein Gegenbeispiel an.

- (1) AB = BA ist im Allgemeinen **falsch**, man nehme z.B. $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ und $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- (2) det(AB) = det(A) det(B) ist wahr.
- (3) $det(A) det(A^{-1}) = 1$ is wahr für A invertierbar.
- (4) det(A + B) = det(A) + det(B) ist im Allgemeinen **falsch**, man wähle z.B. $A = B = E_2$.
- (5) Aus AB=0 (Nullmatrix) folgt A=0 oder B=0 ist im Allgemeinen **falsch**, man wähle z.B. $A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ und $B=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- (6) $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^T \vec{y} \rangle$ für $\vec{x}, \vec{y} \in \mathbb{R}^n$ ist wahr.
- (7) $\det((AB)^T) = \det(A) \det(B)$ ist wahr.
- (8) $(A^{-1})^T = (A^T)^{-1}$ ist wahr (das ist P15, (ii)).
- (9) $A^T A = E_n$ ist im Allgemeinen **falsch**, man wähle z.B. $A = B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
- (10) $AA^{-1} = A^{-1}A$ ist wahr.
- (11) Ist A orthogonal, so ist $A^{-1} = A$ ist im Allgemeinen **falsch**. Die Matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ ist beispielsweise orthogonal, aber $A^2 = -E_2$.
- (12) $\det(\alpha B) = \alpha \det(B)$ für $\alpha \in \mathbb{R}$ ist im Allgemeinen **falsch**. Es ist z.B. $\det(2E_2) = 4 \neq 2 \det(E_2) = 2$. Für die wahren Aussagen schauen Sie bitte auch in das Vorlesungsskript.