Analysis 1 15. Tutorium

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger

Fachbereich Mathematik 15. Februar 2011

Aufgabe 1

Sei (M, d) ein beliebiger metrischer Raum. Zeigen Sie:

- a) Jede Funktion $f: \mathbb{Z} \to M$ ist stetig.
- b) Für jeden Punkt $a \in M$ ist die Funktion $f: M \to \mathbb{R}, x \mapsto d(x, a)$ stetig.
- c) Sei $n \ge 1$ eine natürliche Zahl. Die Koordinatenabbildung $\pi_i : \mathbb{R}^n \to \mathbb{R}$ mit $\pi_i(x_1, ..., x_n) := x_i$ ist für jedes i = 1, ..., n stetig.

Aufgabe 2

Betrachten Sie die Funktion $f:[-2,2] \to \mathbb{R}$ mit

$$f(x) := x^5 + 2x^4 + 16x - 32 + \sqrt{|x|}$$
.

- a) Ist *f* stetig?
- b) Zeigen Sie, dass f mindestens eine Nullstelle hat. Zeigen Sie, dass die Gleichung f(x) = -1 mindestens eine Lösung $x \in [-2, 2]$ besitzt.

Aufgabe 3 Urbilder abgeschlossener Mengen

Seien (M, d_M) und (N, d_N) metrische Räume. Zeigen Sie:

- a) Für eine Funktion $f: M \to N$ sind die folgenden Aussagen äquivalent:
 - 1. Die Funktion *f* ist stetig.
 - 2. Das Urbild $f^{-1}(A) \subseteq M$ jeder abgeschlossenen Menge $A \subseteq N$ ist abgeschlossen.
- b) Ist $f: M \to \mathbb{R}$ eine stetige Funktion, so ist die Menge der Nullstellen von f abgeschlossen in M.

Aufgabe 4 Bilder offener/abgeschlossener Mengen

Seien (M, d_M) und (N, d_N) metrische Räume und $f: M \to N$ eine Funktion. Betrachten Sie folgenden Aussagen:

- a) Die Funktion *f* ist stetig.
- b) Das Bild $f(U) \subseteq N$ jeder offenen Menge $U \subseteq M$ ist offen.
- c) Das Bild $f(A) \subseteq N$ jeder abgeschlossenen Menge $A \subseteq M$ ist abgeschlossen.

Sind diese Bedingungen für jede Funktion $f: M \to N$ äquivalent? Welche Implikationen gelten?