7. Übung Lösungshinweis

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger Fachbereich Mathematik 2. Dezember 2010

Hausübungen

Aufgabe 25 Monotone Abbildungen

Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt monoton wachsend, falls für alle $a, b \in \mathbb{R}$ mit $a \leq b$ gilt:

$$f(a) \leq f(b)$$
.

(a) Zeigen Sie folgende Aussage: Ist $f: \mathbb{R} \to \mathbb{R}$ eine monotone Abbildung, so ist für jede nicht leere nach oben beschränkte Teilmenge $A \subseteq \mathbb{R}$ auch die Bildmenge f(A) nach oben beschränkt und es gilt:

$$\sup(f(A)) \le f(\sup(A)).$$

- (b) Zeigen Sie, dass in (a) sogar Gleichheit gilt, wenn A ein maximales Element besitzt.
- (c) Finden Sie eine monoton wachsende Funktion $f : \mathbb{R} \to \mathbb{R}$ und eine Teilmenge $A \subseteq \mathbb{R}$, so dass gilt:

$$\sup(f(A)) < f(\sup(A)).$$

Lösung

(a) Für jedes $a \in A$ gilt $a \le \sup(A)$. Da $f : \mathbb{R} \to \mathbb{R}$ monoton wachsend ist, gilt also auch $f(a) \le f(\sup(A))$ für jedes $a \in A$. Also ist $f(\sup(A))$ eine obere Schranke für f(A), insbesondere ist f(A) nach oben beschränkt und besitzt, da \mathbb{R} ordnungsvollständig ist, ein Supremum. Es folgt also

$$\sup(f(A)) \le f(\sup(A)),$$

da $f(\sup(A))$ eine obere Schranke war.

(b) Besitzt A ein maximales Element, so ist dies auch das Maximum der Menge A. Ist $m = \max(A)$, so ist $m = \sup(A)$ und $f(m) \in f(A)$ ist das Maximum von f(A): Ist $y \in f(A)$ beliebig, so gilt y = f(x) für ein $x \in A$. Da m in A das Maximum war, folgt $x \le m$ und damit $y = f(x) \le f(m)$ auf Grund der Monotonie von f. Damit erhalten wir insbesodere

$$f(\sup(A)) = f(m) = \sup(f(A)),$$

da das Maximum einer Menge auch deren Supremum ist.

(c) Wir wählen die Funktion

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0. \end{cases}$$

Es ist leicht zu zeigen, daß diese Funktion monoton wachsend ist: Ist $x \le y < 0$ oder $0 \le x \le y$, so ist f(x) = f(y), also gilt auch $f(x) \le f(y)$. Ist $x < 0 \le y$, so ist f(x) = 0 und f(y) = 1. In diesem Fall gilt also inbesondere $f(x) \le f(y)$. Da diese drei Fälle alle Möglichkeiten für eine beliebige Wahl von $x, y \in \mathbb{R}$ mit $x \le y$ abdecken, folgt die Monotonie der Funktion f.

Weiter wählen wir A = [-1, 0[. Nun gilt:

$$\sup(A) = 0 \text{ und } f(A) = \{0\}.$$

Wir erhalten mit $f(\sup(A)) = f(0) = 1$:

$$\sup(f(A)) = 0 < 1 = f(\sup(A)).$$