Lineare Algebra I 10. Tutorium Lineare Abbildungen und Quotientenräume

Fachbereich Mathematik Prof. Dr. Kollross

Dr. Le Roux

Dipl.-Math. Susanne Kürsten

WS 2010/2011 10. Januar 2011

Aufgaben

Aufgabe G1 (Injektivität und Surjektivität)

Es seien V und W endlichdimensionale Vektorräume und $\varphi:V\to W$ eine lineare Abbildung. Ersetzen Sie in den folgenden drei Aussagen die Fragezeichen so, dass die Aussagen wahr sind.

- (a) φ ist surjektiv \Leftrightarrow dim(im φ) = ?
- (b) φ ist injektiv \Leftrightarrow dim(ker φ) =?
- (c) φ ist bijektiv \Leftrightarrow dim V =? und dim(ker φ) =?

Beweisen Sie jeweils die Richtigkeit ihrer Aussagen.

Betrachten Sie nun den \mathbb{R} -Vektorraum $V = \{(a_n)_{n \in \mathbb{N}} \mid a_n \in \mathbb{R} \ \forall \ n \in \mathbb{N}\}$ der reellen Zahlenfolgen (siehe Aufgabe G3 Übungsblatt 9).

- (d) Zeigen Sie dass es eine lineare Abbildung $\varphi_1: V \to V$ gibt, die injektiv, aber nicht surjektiv ist.
- (e) Zeigen Sie dass es eine lineare Abbildung $\varphi_2: V \to V$ gibt, die surjektiv, aber nicht injektiv ist.

Lösung:

(a) Es gilt: φ ist surjektiv \Leftrightarrow dim(im φ) = dim W.

Beweis:

- Angenommen φ ist surjektiv, dann gilt nach Definition im $\varphi = W$ und damit auch dim(im φ) = dim W
- Angenommen es gilt $\dim(\operatorname{im} \varphi) = \dim W$. Aus Satz 4.6.13. aus der Vorlesung folgt dann $\operatorname{im} \varphi = W$, d.h. φ ist surjektiv.
- (b) φ ist injektiv \Leftrightarrow dim(ker φ) = 0.

Dies folgt sofort aus den bekannten Aussagen (siehe frühere Übungsaufgaben):

$$\varphi$$
 ist injektiv \iff ker $\varphi = \{0\}$ und dim $U = 0 \iff U = \{0\}$

für alle Vektorräume U.

(c) φ ist bijektiv \Leftrightarrow dim $V = \dim W$ und dim(ker φ) = 0

Beweis

Mit Hilfe der bekannten Dimensionsformel $\dim(\operatorname{im}\varphi) + \dim(\ker\varphi) = \dim V$ und den Aufgabenteilen (a) und (b) ergibt sich

$$\varphi$$
 ist bijektiv $\iff \varphi$ ist injektiv und surjektiv $\iff \dim(\ker \varphi) = 0$ und $\dim(\operatorname{im} \varphi) = \dim W$
 $\iff \dim V = \dim W \text{ und } \dim(\ker \varphi) = 0$

(d) Wir betrachten die Abbildung $\varphi_1: V \to V$, die definiert ist durch

$$\varphi_1\left((a_n)_{n\in\mathbb{N}}\right)=(b_n)_{n\in\mathbb{N}}$$
 mit $b_1=0, b_{i+1}=a_i \ \forall i\in\mathbb{N}$.

Diese Abbildung verschiebt die Folgenglieder um eins nach hinten und ergänzt eine Null als erstes Folgenglied. D.h. φ_1 ist injektiv, denn wenn man zwei verschiedene Zahlenfolgen verschiebt, so sind die Bilder verschieden.

 φ_1 ist nicht surjektiv, da jede Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ mit $a_1\neq 0$ nicht im Bild von φ_1 liegt.

(e) Wir betrachten die Abbildung $\varphi_2:V\to V$, die definiert ist durch

$$\varphi_2\left((a_n)_{n\in\mathbb{N}}\right)=(b_n)_{n\in\mathbb{N}} \text{ mit } b_i=a_{i+1} \ \forall i\in\mathbb{N}.$$

Diese Abbildung verschiebt die Folgenglieder um eins nach vorn und "vergisst" das erste Folgenglied.

D.h. φ_1 ist surjektiv, denn für eine beliebige Folge $(a_n)_{n\in\mathbb{N}}\in V$ gilt für $b_1:=0, b_{n+1}:=a_n\ \forall n\in\mathbb{N}:$

 $\varphi_2\left((b_n)_{n\in\mathbb{N}}\right)=(a_n)_{n\in\mathbb{N}}.$

 φ_2 ist nicht injektiv, denn für $a_n := 0 \ \forall n \in \mathbb{N}$ und $b_1 := 1, b_{n+1} := 0 \ \forall n \in \mathbb{N}$ gilt

$$\varphi_2((a_n)_{n\in\mathbb{N}}) = \varphi_2((b_n)_{n\in\mathbb{N}}) = (a_n)_{n\in\mathbb{N}}.$$

Aufgabe G2 (Rang)

Gegeben sei die Matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

und die lineare Abbildung

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^3, \quad x \mapsto Ax$$
.

- (a) Bestimmen Sie den Rang der Abbildung φ .
- (b) Bestimmen Sie den Rang der Matrix A (d.h. die Anzahl der Pivotelemente im zugehörigen linearen Gleichungssystem Ax = 0).
- (c) Betrachten Sie die Spaltenvektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \text{ und } v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

der Matrix A. Wie groß ist die maximale Anzahl linear unabhängiger Vektoren in der Menge $\{v_1, v_2, v_3\}$?

(d) Betrachten Sie die Zeilenvektoren

$$w_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ und } w_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

der Matrix A. Wie groß ist die maximale Anzahl linear unabhängiger Vektoren in der Menge $\{w_1, w_2, w_3\}$?

Lösung:

(a) Für $x_1, x_2, x_3 \in \mathbb{R}$ gilt

$$\varphi\left(\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)\right) = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} x_1 + 2x_2 \\ x_1 + 2x_2 \\ x_1 + x_2 + x_3 \end{array}\right) = (x_1 + 2x_2) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) + (x_3 - x_2) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right).$$

D.h. im $\varphi \subseteq \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Andererseits erhält man aus obiger Gleichung auch

$$\lambda_1 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \lambda_2 \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \varphi \left(\left(\begin{array}{c} \lambda_1 \\ 0 \\ \lambda_2 \end{array} \right) \right) \ \forall \ \lambda_1, \lambda_2 \in \mathbb{R} \ .$$

D.h. es gilt auch span
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \subseteq \operatorname{im} \varphi$$
. Insgesamt ist also

$$\operatorname{im} \varphi = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Für $\lambda_1, \lambda_2 \in \mathbb{R}$ mit

$$\lambda_1 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \lambda_2 \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \text{ folgt } \lambda_1 = \lambda_2 = 0 \,.$$

D.h.
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 und $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ sind linear unabhängig und damit eine Basis von span $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} = \operatorname{im} \varphi$.

Nach Definition ist der Rang der Abbildung φ also zwei.

(b) Die Umformung des Gleichungssystems mit Hilfe des Gaußalgorithmus ist die folgende.

$$Ax = 0 \iff x_1 + 2x_2 + 0 \cdot x_3 = 0 \qquad x_1 + 2x_2 = 0 x_1 + 2x_2 + 0 \cdot x_3 = 0 \iff - x_2 + x_3 = 0 x_1 + x_2 + x_3 = 0 \qquad 0 = 0$$

D.h. die Anzahl der Pivotelemente und damit der Rang von A ist zwei.

(c) Die Vektoren v_1, v_2, v_3 sind linear abhängig, denn es gilt

$$2 \cdot \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) - 1 \cdot \left(\begin{array}{c} 2 \\ 2 \\ 1 \end{array}\right) - 1 \cdot \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) = 0 \ .$$

Wie in Aufgabenteil (a) gezeigt wurde sind die Vektoren v_1, v_3 linear unabhängig.

D.h. die maximale Anzahl linear unabhängiger Vektoren in der Menge $\{v_1, v_2, v_3\}$ ist zwei.

(d) Die Vektoren w_1, w_2, w_3 sind linear abhängig, denn es gilt

$$1 \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0.$$

Außerdem sind die Vektoren w_1, w_3 linear unabhängig, denn für $\lambda_1, \lambda_2 \in \mathbb{R}$ mit

$$0 = \lambda_1 w_1 + \lambda_2 w_3 = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ folgt } \lambda_2 = 0 \text{ und } \lambda_1 = 0.$$

D.h. die maximale Anzahl linear unabhängiger Vektoren in der Menge $\{w_1, w_2, w_3\}$ ist zwei.

Aufgabe G3 (Quotientenraum)

Wir betrachten den Vektorraum $V = \mathbb{R}^2$ und den Untervektorraum $U := \left\{ \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$.

- (a) Zeichnen sie U und die affinen Unterräume $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + U$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix} + U$ und $\begin{pmatrix} 1 \\ 1 \end{pmatrix} + U$.
- (b) Zeigen Sie, dass für $a, b \in \mathbb{R}$ gilt:

$$\left(\begin{array}{c} a \\ b \end{array}\right) + U = \left\{ \left(\begin{array}{c} x \\ y \end{array}\right) \,\middle|\, x, y \in \mathbb{R}, x + y = a + b \right\}.$$

(c) Zeigen Sie, dass die Abbildung

$$\varphi: V/U \to \mathbb{R}, \quad \left(\begin{array}{c} a \\ b \end{array}\right) + U \mapsto a + b$$

wohldefiniert und sogar ein Vektorraumisomorphismus ist.

- (d) Geben Sie eine graphische Interpretation der Abbildung φ aus dem letzten Aufgabenteil an.
- (e) Ist die Abbildung

$$\chi: V/U \to \mathbb{R}, \quad \left(\begin{array}{c} a \\ b \end{array}\right) + U \to a \cdot b$$

wohldefiniert? Zeigen Sie ihre Behauptung.

Lösung:

(a) Im \mathbb{R}^2 ist U eine Gerade durch den Ursprung mit Anstieg -1.

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + U$ ist die zu U parallele Gerade, die die y-Achse in 1 schneidet.

 $\begin{pmatrix} 2 \\ 0 \end{pmatrix} + U$ und $\begin{pmatrix} 1 \\ 1 \end{pmatrix} + U$ sind gleich. Es handelt sich bei ihnen um die zu U parallele Gerade, die die y-Achse in 2 schneidet.

(b) Ein Element $\begin{pmatrix} x \\ y \end{pmatrix}$ aus $\begin{pmatrix} a \\ b \end{pmatrix} + U$ hat nach Definition die Gestalt

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} a \\ b \end{array}\right) + \lambda \left(\begin{array}{c} 1 \\ -1 \end{array}\right) = \left(\begin{array}{c} a + \lambda \\ b - \lambda \end{array}\right)$$

mit einem $\lambda \in \mathbb{R}$. D.h. es folgt insbesondere $x+y=a+\lambda+b-\lambda=a+b$. Also ist

$$\left(\begin{array}{c} x \\ y \end{array} \right) \in \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \, \middle| \, x, y \in \mathbb{R}, x + y = a + b \right\}$$

und daraus folgt

$$\left(\begin{array}{c} a \\ b \end{array}\right) + U \subseteq \left\{ \left(\begin{array}{c} x \\ y \end{array}\right) \,\middle|\, x, y \in \mathbb{R}, x + y = a + b \right\}.$$

Andererseits gilt für ein Element $\begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x, y \in \mathbb{R}, x+y=a+b \right\}$ auch

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} x-a \\ y-b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} x-a \\ -(x-a) \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + (x-a) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \in \begin{pmatrix} a \\ b \end{pmatrix} + U.$$

D.h. es gilt

$$\left(\begin{array}{c} a \\ b \end{array}\right) + U \supseteq \left\{ \left(\begin{array}{c} x \\ y \end{array}\right) \,\middle|\, x, y \in \mathbb{R}, x + y = a + b \right\}.$$

Insgesamt ergibt sich dann

$$\left(\begin{array}{c} a \\ b \end{array}\right) + U = \left\{ \left(\begin{array}{c} x \\ y \end{array}\right) \,\middle|\, x, y \in \mathbb{R}, x + y = a + b \right\}.$$

w.z.b.w.

(c) • Für $a, b, a', b' \in \mathbb{R}$ mit

$$\begin{pmatrix} a \\ b \end{pmatrix} + U = \begin{pmatrix} a' \\ b' \end{pmatrix} + U$$
 folgt
$$\begin{pmatrix} a' \\ b' \end{pmatrix} \in \begin{pmatrix} a \\ b \end{pmatrix} + U = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x, y \in \mathbb{R}, x + y = a + b \right\} \text{ und damit}$$

$$a' + b' = a + b$$

und

$$\varphi\left(\left(\begin{array}{c} a \\ b \end{array}\right) + U\right) = \varphi\left(\left(\begin{array}{c} a' \\ b' \end{array}\right) + U\right) = a + b.$$

D.h. die Abbildungsvorschrift von φ ist unabhängig von Wahl des Repräsentanten der affinen Unterräume. φ ist also wohldefiniert.

• Für $a_1, b_1, a_2, b_2, \lambda_1, \lambda_2 \in \mathbb{R}$ gilt

$$\begin{split} \varphi\left(\lambda_1\left(\left(\begin{array}{c}a_1\\b_1\end{array}\right)+U\right)+\lambda_2\left(\left(\begin{array}{c}a_2\\b_2\end{array}\right)+U\right)\right) &=& \varphi\left(\left(\begin{array}{c}\lambda_1a_1+\lambda_2a_2\\\lambda_1b_1+\lambda_2b_2\end{array}\right)+U\right)\\ &=& \lambda_1a_1+\lambda_2a_2+\lambda_1b_1+\lambda_2b_2\\ &=& \lambda_1(a_1+b_1)+\lambda_2(a_2+b_2)\\ &=& \lambda_1\varphi\left(\left(\begin{array}{c}a_1\\b_1\end{array}\right)+U\right)+\lambda_2\varphi\left(\left(\begin{array}{c}a_2\\b_2\end{array}\right)+U\right) \end{split}$$

D.h. φ ist linear.

• Für $x \in \mathbb{R}$ beliebig gilt

$$\varphi\left(\left(\begin{array}{c}x\\0\end{array}\right)+U\right)=x+0=x$$
.

D.h. φ ist surjektiv

• $\begin{pmatrix} a \\ b \end{pmatrix}$ ist genau dann in ker φ , wenn a+b=0 gilt, d.h. wenn

$$\begin{pmatrix} a \\ b \end{pmatrix} \in \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x, y \in \mathbb{R}, x + y = 0 \right\} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + U$$

ist. Es folgt also

$$\ker \varphi = \left\{ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) + U \right\} = \left\{ 0 \right\},\,$$

wobei die letzte Null das Nullelement in V/U bezeichnet

D.h. φ ist injektiv.

Insgesamt ist φ also eine wohldefinierte, bijektive, lineare Abbildung, also ein Vektorraumisomorphismus.

w.z.b.w.

(d) Eine mögliche Interpretation ist folgende:

Man kann \mathbb{R} mit der y-Achse im \mathbb{R}^2 identifizieren. Dann bildet die Abbildung φ einen affinen Unterraum (der ja eine zu U parallele Gerade ist) auf dessen Schnittpunkt mit der y-Achse ab.

(e) Wegen
$$U \ni \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 gilt

$$\left(\begin{array}{c}1\\-1\end{array}\right)+U=\left(\begin{array}{c}0\\0\end{array}\right)+U.$$

Nach der angegebenen Abbildungsvorschrift ist aber

$$\chi\left(\left(\begin{array}{c}1\\-1\end{array}\right)+U\right)=1\cdot(-1)=-1\neq0=0\cdot0=\chi\left(\left(\begin{array}{c}0\\0\end{array}\right)+U\right).$$

D.h. χ bildet dasselbe Element aus V/U in zwei verschiedene Elemente aus $\mathbb R$ ab, was natürlich nicht möglich ist. D.h. χ ist nicht wohldefiniert.

Aufgabe G4 (Quotientenraum*)

(*) Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und $U\subseteq V$ ein Untervektorraum. Weiterhin sei u_1,\ldots,u_m eine Basis von U

Dann gibt es nach dem Basisergänzungssatz ein $n \in \mathbb{N}_0$ und Vektoren $v_1, \dots, v_n \in V$, so dass $u_1, \dots, u_m, v_1, \dots, v_n$ eine Basis von V ist.

Zeigen Sie, dass in dieser Situation die Elemente $v_1 + U, \dots, v_n + U$ eine Basis von V/U bilden.

Lösung

• Es sei v+U ein beliebiges Element aus V/U. Dann ist $v \in V$ und da $u_1, \ldots, u_m, v_1, \ldots, v_n$ eine Basis von V ist, gibt es Koeffizienten $\lambda_1, \ldots, \lambda_m, \mu_1, \ldots, \mu_n \in \mathbb{R}$ mit

$$\nu = \lambda_1 u_1 + \ldots + \lambda_m u_m + \mu_1 v_1 + \ldots + \mu_n v_n.$$

Wegen $v - (\mu_1 v_1 + \ldots + \mu_n v_n) = \lambda_1 u_1 + \ldots + \lambda_m u_m \in U$ folgt

$$v + U = (\mu_1 v_1 + ... + \mu_n v_n) + U = \mu_1 (v_1 + U) + ... + \mu_n (v_n + U).$$

D.h. die Vektoren $v_1 + U, \dots, v_n + U$ erzeugen V/U.

• Seien nun $\mu_1, \ldots, \mu_n \in \mathbb{R}$ mit

$$0 + U = \mu_1(\nu_1 + U) + \dots + \mu_n(\nu_n + U) = (\mu_1 \nu_1 + \dots + \mu_n \nu_n) + U.$$

Insbesondere gilt also $0 \in (\mu_1 \nu_1 + ... + \mu_n \nu_n) + U$. D.h. es existiert ein $u \in U$ und $\lambda_1, ..., \lambda_m \in \mathbb{R}$ mit

$$0 = \mu_1 \nu_1 + \ldots + \mu_n \nu_n + u = \mu_1 \nu_1 + \ldots + \mu_n \nu_n + \lambda_1 u_1 + \ldots + \lambda_m u_m.$$

Da $u_1, \ldots, u_m, v_1, \ldots, v_n$ linear unabhängig sind, folgt daraus

$$\mu_1 = \ldots = \mu_n = 0.$$

D.h. die Vektoren $v_1 + U, \dots, v_n + U$ sind linear unabhängig.

Insgesamt folgt, dass die Vektoren $v_1 + U, \dots, v_n + U$ eine Basis von V/U bilden.

w.z.b.w.