Lineare Algebra I 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Kollross

WS 2010/2011 20. Oktober 2010

Dr. Le Roux

Gruppenübung

Aufgabe G1 (Logisch?)

- (a) Folgt aus "Wenn es regnet, gibt es Wolken", dass es keine Wolken gibt, wenn es nicht regnet?
- (b) Stellen Sie den obigen Schluss mithilfe der Aussagenlogik dar und begründen Sie, warum er falsch ist.

Aufgabe G2 (Beweise mithilfe der Wahrheitstafeln)

Welche der folgenden aussagelogischen Formeln sind allgemein gültig? Welche sind immer falsch? Welche sind zueinander äquivalent?

- (a) $p \vee \neg p$
- (b) $p \Rightarrow (q \lor \neg q)$
- (c) $p \land \neg p$
- (d) $p \lor p$
- (e) $p \wedge p$
- (f) $(p \land \neg p) \Rightarrow q$

Aufgabe G3 (Eigenschaften der Junktoren)

Wir betrachten die zweistelligen logischen Junktoren $J \in \{\lor, \land, \Rightarrow, \Longleftrightarrow\}$.

- (a) Welche dieser Junktoren sind kommutativ? (Ein Junktor J ist kommutativ, wenn $xJy \Leftrightarrow yJx$ gilt.)
- (b) Sind die Junktoren $\vee, \wedge, \Leftrightarrow$ auch assoziativ? (Ein Junktor J ist assoziativ, wenn $(xJy)Jz \Leftrightarrow xJ(yJz)$ gilt.)

Aufgabe G4 (Quantoren)

Entscheiden Sie, welche Aussagen über die natürlichen Zahlen wahr sind.

- (a) $\forall n \in \mathbb{N} : 0 \le n$
- (b) $\exists n \in \mathbb{N} : 3 \leq n$
- (c) $\forall n \in \mathbb{N} : 3 \leq n$
- (d) $\forall n \in \mathbb{N} : \exists k \in \mathbb{N} : k = 2n$
- (e) $\exists n \in \mathbb{N} : \forall k \in \mathbb{N} : k = 2n$
- (f) $\forall k \in \mathbb{N} : \exists n \in \mathbb{N} : k = 2n$

Begründen Sie Ihre Antworten.

Seien die *Vereinigung* $A \cup B$ und die *Schnittmenge* zweier Mengen $A \cap B$ definiert durch $A \cup B := \{x \mid x \in A \lor x \in B\}$ und $A \cap B := \{x \mid x \in A \land x \in B\}$. Sei außerdem das *Komplement* von B in A definiert durch $A \setminus B := \{x \in A \mid x \notin B\}$.

Aufgabe G5 (Mengenoperationen)

Seien M eine Menge und A, B und C Teilmengen von M.

- (a) Beweisen Sie $A \cup B = B \cup A$ und $A \cap B = B \cap A$.
- (b) Vervollständigen und beweisen Sie $A \cup \emptyset = ?$ und $A \cap \emptyset = ?$.
- (c) Vergleichen Sie $(A \cup B) \cup C$ und $A \cup (B \cup C)$. Welche einfachere Notation kann man daraus herleiten?

Gibt es ähnliche Regeln in der Aussagenlogik?

Hausübung

Aufgabe H1 (Wahrheitstafeln)

Weisen Sie nach, dass die folgenden Aussagen allgemeingültig sind, indem Sie Wahrheitstafeln aufstellen.

- (a) $p \Leftrightarrow p$
- (b) $(p \Leftrightarrow q) \Rightarrow (q \Leftrightarrow p)$
- (c) $((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$

Aufgabe H2 (Quantoren, de Morgansche Regeln)

Sei M eine Menge. Drücken Sie die Negationen der folgenden Aussagen so aus, dass die Negationssymbole so weit rechts wie möglich stehen.

- (a) $\forall x \in M : \exists y \in M : P(x, y)$
- (b) $\forall x \in M : P(x) \lor Q(x)$
- (c) $\forall x \in M : P(x) \lor (\forall y \in M : Q(y))$
- (d) $\forall x \in M : P(x) \lor (\exists y \in M : Q(x,y) \land R(y))$
- (e) $\forall x \in M : \exists y \in M : (P(y) \Rightarrow y = y)$

Aufgabe H3 (Komplemente)

Seien M eine Menge und A und B Teilmenge von M. Vergleichen Sie die folgenden Mengen.

- (a) Vergleichen Sie $M \setminus (A \cup B)$ und $(M \setminus A) \cap (M \setminus B)$.
- (b) Vergleichen Sie $M \setminus (A \cap B)$ und $(M \setminus A) \cup (M \setminus B)$.
- (c) Vergleichen Sie $(M \setminus A) \setminus B$ und $(M \setminus B) \setminus A$.
- (d) Vergleichen Sie $(M \setminus A) \setminus B$ und $M \setminus (B \setminus A)$.

Gibt es ähnliche Regeln in der Aussagenlogik?