Aufgabe 1 Let $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear map defined by

$$
\varphi\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{2}+x_{3}+x_{4} \\
-x_{1}+x_{2}+x_{4} \\
-2 x_{1}-x_{3} \\
-x_{1}-3 x_{2}-x_{3}+x_{4}
\end{array}\right) .
$$

Find the matrix of φ with respect to the standard basis of \mathbb{R}^{4}. Compute the rank of φ and determine a basis of the image of φ. Is φ invertible? Determine the dimension of the kernel of φ.

Aufgabe 2 Which of the following 3×3-matrices are invertible?

$$
A=\left(\begin{array}{lll}
1 & -1 & 1 \\
1 & -1 & 1 \\
1 & -1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right), \quad C=\left(\begin{array}{lll}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right) .
$$

Justify your answers. Compute the inverse matrix in case it exists.

Aufgabe 3

(a) Show that the vectors

$$
b_{1}:=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right), \quad b_{2}:=\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right), \quad b_{3}:=\left(\begin{array}{c}
6 \\
-3 \\
-2
\end{array}\right)
$$

form a basis of \mathbb{R}^{3}.
(b) Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by

$$
\varphi(x)=\left(\begin{array}{c}
11 x_{1}+12 x_{2}+6 x_{3} \\
-5 x_{1}-5 x_{2}-3 x_{3} \\
-3 x_{1}-4 x_{2}
\end{array}\right) .
$$

Determine the matrix $[\varphi]_{B}$ of this endomorphism with respect to the basis $B=$ $\left(b_{1}, b_{2}, b_{3}\right)$.

Aufgabe 4 Let u_{1}, \ldots, u_{m} be elements of a vector space. Prove that the vectors

$$
v_{k}:=\sum_{j=1}^{k} u_{j}, \quad k=1, \ldots, m,
$$

are linearly dependent if and only if u_{1}, \ldots, u_{m} are linearly dependent.

Aufgabe 5 Let $U \subseteq \mathbb{C}^{4}$ be the linear subspace consisting of all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in$ \mathbb{C}^{4} which fulfill the following equations:

$$
\begin{array}{rcccc}
x_{1} & +x_{2} & -i x_{3} & -i x_{4} & =0, \\
i x_{1} & & +x_{3} & & =0, \\
& x_{2} & & -i x_{4} & =0 .
\end{array}
$$

(a) Find a basis of U.
(b) Let W be the linear subspace of \mathbb{C}^{4} spanned by the vectors $(1,0,0,0)^{T},(0,1,0,0)^{T}$. Prove that $\mathbb{C}^{4}=U \oplus W$.
(c) Show that there exists a linear map $\varphi: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ such that $\varphi(u)=u$ for all $u \in U$ and $\varphi(w)=-w$ for all $w \in W$.

Aufgabe 6

(a) Prove or disprove: There exists a linear map $\varphi: \mathbb{C}^{6} \rightarrow \mathbb{C}^{7}$ such that $\operatorname{dim}(\operatorname{ker}(\varphi))=4$ and $\operatorname{rank}(\varphi)=3$.
(b) Prove or disprove: There exists an invertible 3×3-matrix A such that $\operatorname{tr}(A)=0$.
(c) Let $V=M_{2}(\mathbb{C})$ be the vector space of complex 2×2-matrices. Which of the following maps $V \rightarrow \mathbb{C}$ are linear?
(a) $A \mapsto \operatorname{det}(A)$,
(b) $\quad A \mapsto \operatorname{tr}(A)$,
(c) $\quad A \mapsto \operatorname{rank}(A)$.

Justify your answers.
(d) Let $G=\left(\mathbb{R}^{n},+, 0\right)$ the additive group of vector addition over \mathbb{R}^{n}. Decide which of the following subsets are subgroups of G.

$$
\begin{aligned}
& A=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n} \mid x_{1}+\ldots+x_{n}=1\right\} \\
& B=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n}>0\right\} \\
& C=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\} .
\end{aligned}
$$

Justify your answers.

