Aufgabe 1 Let $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^4$ be the linear map defined by

$$\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ -x_1 + x_2 + x_4 \\ -2x_1 - x_3 \\ -x_1 - 3x_2 - x_3 + x_4 \end{pmatrix}.$$

Find the matrix of φ with respect to the standard basis of \mathbb{R}^4 . Compute the rank of φ and determine a basis of the image of φ . Is φ invertible? Determine the dimension of the kernel of φ .

Aufgabe 2 Which of the following 3×3 -matrices are invertible?

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}.$$

Justify your answers. Compute the inverse matrix in case it exists.

Aufgabe 3

(a) Show that the vectors

$$b_1 := \begin{pmatrix} -3\\2\\1 \end{pmatrix}, \quad b_2 := \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \quad b_3 := \begin{pmatrix} 6\\-3\\-2 \end{pmatrix}$$

form a basis of \mathbb{R}^3 .

(b) Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by

$$\varphi(x) = \begin{pmatrix} 11x_1 + 12x_2 + 6x_3 \\ -5x_1 - 5x_2 - 3x_3 \\ -3x_1 - 4x_2 \end{pmatrix}$$

Determine the matrix $[\varphi]_B$ of this endomorphism with respect to the basis $B = (b_1, b_2, b_3)$.

Aufgabe 4 Let u_1, \ldots, u_m be elements of a vector space. Prove that the vectors

$$v_k := \sum_{j=1}^k u_j, \quad k = 1, \dots, m,$$

are linearly dependent if and only if u_1, \ldots, u_m are linearly dependent.

Aufgabe 5 Let $U \subseteq \mathbb{C}^4$ be the linear subspace consisting of all vectors $(x_1, x_2, x_3, x_4)^T \in \mathbb{C}^4$ which fulfill the following equations:

- (a) Find a basis of U.
- (b) Let W be the linear subspace of \mathbb{C}^4 spanned by the vectors $(1, 0, 0, 0)^T$, $(0, 1, 0, 0)^T$. Prove that $\mathbb{C}^4 = U \oplus W$.
- (c) Show that there exists a linear map $\varphi \colon \mathbb{C}^4 \to \mathbb{C}^4$ such that $\varphi(u) = u$ for all $u \in U$ and $\varphi(w) = -w$ for all $w \in W$.

Aufgabe 6

- (a) Prove or disprove: There exists a linear map $\varphi \colon \mathbb{C}^6 \to \mathbb{C}^7$ such that $\dim(\ker(\varphi)) = 4$ and $\operatorname{rank}(\varphi) = 3$.
- (b) Prove or disprove: There exists an invertible 3×3 -matrix A such that tr(A) = 0.
- (c) Let $V = M_2(\mathbb{C})$ be the vector space of complex 2×2 -matrices. Which of the following maps $V \to \mathbb{C}$ are linear?

(a)
$$A \mapsto \det(A)$$
, (b) $A \mapsto \operatorname{tr}(A)$, (c) $A \mapsto \operatorname{rank}(A)$.

Justify your answers.

(d) Let $G = (\mathbb{R}^n, +, 0)$ the additive group of vector addition over \mathbb{R}^n . Decide which of the following subsets are subgroups of G.

$$A = \{ (x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 + \dots + x_n = 1 \}, B = \{ (x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1, \dots, x_n > 0 \}, C = \{ (x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1, \dots, x_n \in \mathbb{Z} \}.$$

Justify your answers.