Analysis II für M, LaG/M, Ph 10. Tutoriumsblatt

Fachbereich Mathematik Prof. Dr. Christian Herrmann Vassilis Gregoriades Horst Heck WS 2010/11 14.1.2011

Aufgaben

Aufgabe T10.1

- (a) Es seien $I,J \subset \mathbb{R}$ Intervalle und $\gamma:I \to \mathbb{R}^n$ und $\tilde{\gamma}:J \to \mathbb{R}^n$ zwei stetig differenzierbare Kurven. Die Kurven heißen äquivalent, falls es eine monoton wachsende, stetig differenzierbare, bijektive Funktion $\varphi:J \to I$ gibt, so dass $\gamma(\varphi(t)) = \tilde{\gamma}(t)$ für alle $t \in J$ gilt. $\tilde{\gamma}$ heißt auch Umparametrisierung von γ .
 - Zeigen Sie, dass sich jede stetig differenzierbare Kurve nach der Weglänge parametrisieren lässt, d.h. zu jeder Kurve γ gibt es eine Umparametrisierung $\tilde{\gamma}$, so dass $|\tilde{\gamma}'| = 1$ gilt.
- (b) Zeigen Sie, dass das Kurvenintegral unabhängig von der gewählten Parametrisierung ist. Genauer: Ist $f \circ \gamma$ stetig und $\tilde{\gamma}$ eine Umparametrisierung von γ , so gilt

$$\int_{\gamma} f(x) \, \mathrm{d}x = \int_{\tilde{\gamma}} f(x) \, \mathrm{d}x.$$

Lösung:

(a) Wir suchen eine Parametertransformation $\varphi(t)$, so dass $\tilde{\gamma}(t) = \gamma(\varphi(t))$ mit $|\tilde{\gamma}'| = 1$. Mit der Kettenregel folgt, dass dann die Gleichung $|\gamma'(\varphi(t))|\varphi'(t) = 1$ wegen $\varphi' > 0$ gelten muss. Daher muss die Umkehrfunktion ψ von φ die Bedingung $\psi'(s) = |\gamma'(s)|$ erfüllen. Das heißt, es gilt

$$t = \psi(s) = \int_{a}^{s} |\gamma'(r)| \, \mathrm{d}r$$

dies ist eine zulässige Umparametrisierung. Weiter erkennt man, dass durch ψ gerade die Kurvenlänge gegeben ist.

(b) Es seien γ_1 und γ_2 äquivalente Kurven. Das heißt, es gibt eine monoton wachsende Funktion φ , so dass $\gamma_2 = \gamma_1 \circ \varphi$ gilt. Nach der Kettenregel folgt dann $\gamma_2'(t) = \gamma_1'(\varphi(t)) \cdot \varphi'(t)$ und damit gilt mit einer Anwendung der Substitutionsregel $(s = \varphi(t))$

$$\int_{\gamma_2} f(x) dx = \int_{a_2}^{b_2} f(\gamma_s(t)) \cdot \gamma_2'(t) dt$$

$$= \int_{a_2}^{b_2} f(\gamma_1(\varphi(t))) \gamma_1'(\varphi(t)) \varphi'(t) dt$$

$$= \int_{a_1}^{b_1} f(\gamma_1(s)) \gamma_1'(s) ds$$

$$= \int_{\gamma_1} f(x) dx.$$

Aufgabe T10.2

Beweisen Sie: Eine Menge $M \subset \mathbb{R}^n$ ist genau dann eine n-dimensionale differenzierbare Untermannigfaltigkeit von \mathbb{R}^n , wenn M in \mathbb{R}^n offen ist.

Lösung: " \Rightarrow ": Es sei M eine n-dimensionale differenzierbare Untermannigfaltigkeit von \mathbb{R}^n und $x \in M$. Dann gibt es nach Definition eine Umgebung U von x eine offene Menge $V \subset \mathbb{R}^n$ und einen Diffeomorphismus $\varphi: U \to V$, so dass $\varphi(U \cap M) = V \cap \mathbb{R}^n = V$ gilt. Damit ist $U \cap M = \varphi^{-1}(V) = U$ also $U \subset M$ ist eine Umgebung von x die zu M gehört. Daher ist M offen.

" \Leftarrow ": Es sei $M \subset \mathbb{R}^n$ offen und $x \in M$. Dann setzen wir U := M, V := M und $\varphi := id_M$ Offensichtlich ist φ ein Diffeomorphismus und es gilt $\varphi(U \cap M) = \varphi(M) = M = V = V \cap \mathbb{R}^n$. Also ist M eine n-dimensionale Untermannigfaltigkeit des \mathbb{R}^n .