Analysis II für M, LaG/M, Ph 7. Übungsblatt

Fachbereich Mathematik Apl. Prof. Christian Herrmann Vassilis Gregoriades Horst Heck $\begin{array}{c} {\rm WS}\ 2010/11 \\ 03.12.2010 \end{array}$

Gruppenübung

Aufgabe G7.1

Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = \cos x \sin y \exp(z)$. Bestimmen Sie das 3-te Taylorpolynom von f in (0,0,0) unter Verwendung der folgenden zwei Arten:

- (a) durch den Satz von Langrange-Taylor;
- (b) durch das Multiplizieren der Potenzreihen von den Funktionen $\exp(z)$, $\cos x$, $\sin y$.

Aufgabe G7.2

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: f(x,y) = \sin(x^2 + y^2)$. Für jedes $n \in \mathbb{N}$ betrachten wir das n-te Polynom f(x,y) von f in (0,0).

- (a) Bestimmen Sie das 2-te Taylor Polynom $T_p^2 f(x, y)$ von f in (0, 0).
- (b) Sein ein Konstant c>0, sodass $\max\{|f_{xx}(u)|,|f_{yy}(u)|,|f_{xy}(u)|\}\leq c$, für alle $|u|\leq 0.1$. Zeigen Sie, dass der Abstand zwischen f(0.1,0.1) und $T_p^1f(0.1,0.1)$ kleiner oder gleich als $2c\cdot(0.1)^2$ ist.

Aufgabe G7.3

Sei eine differenzierbare Funktion $f: D = \mathbb{R}^2 \to \mathbb{R}$, für die f'(x,y) = (5,0) gilt für alle $x,y \in \mathbb{R}$. Zeigen Sie, dass es ein Konstant $c \in \mathbb{R}$ gibt, sodass

$$f(x,y) = 5x + c$$

für alle $x, y \in \mathbb{R}$.

Hausübung

Aufgabe H7.1 (6 Punkte)

Sei $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x \cdot \exp(\cos y)$. Bestimmen Sie das 2-te Taylorpolynom von f in (0,0) unter Verwendung der folgenden zwei Arten:

- (a) durch den Satz von Langrange-Taylor;
- (b) durch die Komposition der Potenzreihen von den Funktionen $\exp(x)$, $\cos x$.

Hinweis für (b). Bestimmen Sie erstes ein Polynom q(y), sodass $\cos y \approx q(y)$ und dann betrachten Sie die Funktion $\exp(q(y))$.

Aufgabe H7.2 (6 Punkte)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}: f(x,y) = \cos(2x+3y)$. Für jedes $n \in \mathbb{N}$ betrachten wir das n-te Polynom $T_p^n f(x,y)$ von f in (0,0).

- (a) Bestimmen Sie das 2-te Taylorpolynom $T_p^2 f(x,y)$ von f in (0,0).
- (b) Bestimmen Sie die partielle Ableitungen f_{xx}, f_{yy}, f_{xy} auf jedem Punkt $(x_0, y_0) \in \mathbb{R}^2$.
- (c) Zeigen Sie (ohne die Benutzung eines Rechners), dass der Abstand zwischen f(0.1, 0.1) und $T_p^1 f(0.1, 0.1)$ kleiner oder gleich als 0.125 ist.

Aufgabe H7.3 (6 Punkte)

Gegeben sei eine differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, sodass f(0,0) = 0 und $f'(x,y) = (x \ y)$ für alle $x,y \in \mathbb{R}$. Zeigen Sie, dass für jedes $(x,y) \in \mathbb{R}^2$ ein $\tau \in [0,1]$ gibt, sodass

$$f(x,y) = \tau \cdot (x^2 + y^2).$$