Analysis II für M, LaG/M, Ph 1. Übungsblatt

Fachbereich Mathematik Apl. Prof. Christian Herrmann Vassilis Gregoriades Horst Heck WS 2010/11 22.10.2010

Gruppenübung

Aufgabe G1.1

Für jedes $n \in \mathbb{N}$ betrachten wir die Zerlegung $Z_n = \{\frac{k}{2^n} \mid k = 0, 1, \dots, 2^n\}$ des Intervalls [0,1] und die Funktion $\varphi_n : [0,1] \to \mathbb{R}$, die so definiert ist: $\varphi_n(0) = 0$ und $\varphi_n(x) = (\frac{k}{2^n})^2$; wobei k die einzige natürliche Zahl ist, sodass $x \in (\frac{k-1}{2^n}, \frac{k}{2^n}]$, wenn $0 < x \le 1$;

(a) Zeigen Sie, dass für jedes $n \in \mathbb{N}$

$$\int_{0}^{1} \varphi_{n}(x)dx = \frac{1}{6} \cdot (1 + \frac{1}{2^{n}}) \cdot (2 + \frac{1}{2^{n}})$$

gilt.

Hinweis. Es gilt $\sum_{k=1}^{m} k^2 = \frac{m(m+1)(2m+1)}{6}$.

- (b) Zeigen Sie dass die Folge $(\varphi_n)_{n\in\mathbb{N}}$ gleichmäßig gegen $f(x)=x^2, x\in[0,1]$ konvergiert.
- (c) Berechnen Sie das Integral $\int_0^1 x^2 dx$ ohne die Benutzung des Theorems 31.8 (Hauptsatz der Differenzial- und Integralrechnung).

Aufgabe G1.2 (Korollar 30.14.)

- (a) Sei $f: I \to \mathbb{R}$ eine Funktion, sodass es eine Folge $(f_n)_{n \in \mathbb{N}}$ von Treppenfunktionen auf I gibt mit $f = \sum_{n=1}^{\infty} f_n$ und $\sum_{n=1}^{\infty} ||f_n||_{\infty} < \infty$. Zeigen Sie, dass f sprungstetig ist.
- (b) Sei $f:I\to\mathbb{K}$ eine sprungstetige Funktion. Zeigen Sie, dass es für jedes $k\in\mathbb{N}$ eine Treppenfunktion $\varphi_k:I\to\mathbb{K}$ gibt mit

$$|f(x) - \varphi_k(x)| \le \frac{1}{2^k}$$
, für alle $x \in I$.

(c) Sei $f: I \to \mathbb{R}$ eine sprungstetige Funktion. Zeigen Sie, dass es eine Folge $(f_n)_{n \in \mathbb{N}}$ von Treppenfunktionen auf I gibt mit $f = \sum_{n=1}^{\infty} f_n$ und $\sum_{n=1}^{\infty} \|f_n\|_{\infty} < \infty$.

Hinweis. Nehmen Sie $f_1 = \varphi_1$ und jedes f_{k+1} als die Differenz zweier Funktionen der Folge $(\varphi_k)_{k \in \mathbb{N}}$ von (b).

Aufgabe G1.3

(a) Sei $g : \mathbb{R} \to [a, b]$ eine differenzierbare Funktion und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie, dass die Funktion $F : \mathbb{R} \to \mathbb{R}$:

$$F(x) = \int_{a}^{g(x)} f(t) dt$$

differenzierbar ist und $F'(x) = f(g(x)) \cdot g'(x)$ für alle $x \in \mathbb{R}$.

(b) Berechnen Sie die Ableitung der Funktion $F(x) = \int_4^{x^2} \frac{1}{\log(t)} dt$, $x \in [2,3]$.

Hausübung

Aufgabe H1.1 (6 Punkte)

- (a) Zeigen Sie dass $\left|\frac{1}{x+1} \frac{1}{y+1}\right| \le |x-y|$, für alle $x, y \ge 0$.
- (b) Für jedes $n \in \mathbb{N}$ betrachten wir die Zerlegung $P_n = \{\frac{k}{2^n} \mid k = 0, 1, \dots, 2^n\}$ des Intervalls [0, 1] und die Funktion $\varphi_n : [0, 1] \to \mathbb{R}$, die so definiert ist: $\varphi_n(0) = 1$ und $\varphi_n(x) = \frac{1}{(\frac{k}{2^n}) + 1}$; wobei k die einzige natürliche Zahl ist, sodass $x \in (\frac{k-1}{2^n}, \frac{k}{2^n}]$, wenn $0 < x \le 1$. Zeigen Sie, dass

$$\int_0^1 \varphi_n \xrightarrow{n \to \infty} \log(2).$$

Hinweis. Nehmen Sie die Funktion $f(x) = \frac{1}{x+1}, x \ge 0$. Was ist der Wert des Integrals $\int_0^1 f(x) dx$?

Aufgabe H1.2 (6 Punkte)

- (a) Berechnen Sie die Ableitung der Funktion $F(x) = \int_{-x^2}^{x^3} e^{t^2} dt$, $x \in [0, 1]$.
- (b) Sei $f:[0,2] \to \mathbb{R}$ eine stetige Funktion, sodass $\int_0^2 f(x) dx \le 100$. Zeigen Sie, dass es ein $\xi \in [0,2]$ gibt, sodass $f(\xi) \le 50$.

Hinweis. Benutzen Sie die Bemerkung 31.6.

Aufgabe H1.3 (6 Punkte)

(a) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Treppenfunktionen auf einem abgeschlossen Intervall I, sodass $\sum_{n=1}^{\infty} \|f_n\|_{\infty} < \infty$ und $f = \sum_{n=1}^{\infty} f_n$. Zeigen Sie, dass

$$\int_{I} f = \sum_{n=1}^{\infty} \int_{I} f_{n}.$$

- (b) Wir definieren $x_1=0,\ x_n=\sum_{i=1}^{n-1}\frac{1}{i^2}$ für jedes $n\geq 2$. (Es gilt, dass $x_n\to\frac{\pi^2}{6}$.) Wir betrachten die Funktion $f:[0,\frac{\pi^2}{6}]\to\mathbb{R}$, die auf jedem Intervall $(x_n,x_{n+1}]$ gleich 1/n ist und $f(0)=f(\frac{\pi^2}{6})=0$. Wir betrachten auch die Funktionen $f_n:[0,\frac{\pi^2}{6}]\to\mathbb{R},\ n=1,2,\ldots$, die so definiert sind: $f_n(x)=\frac{1}{n}$ wenn $x\in(x_n,x_{n+1}],\ f_n(x)=f(\frac{\pi^2}{6})=0$ wenn $x\notin(x_n,x_{n+1}]$.
 - i. Zeigen Sie, dass es $f(x) = \sum_{k=1}^{\infty} f_k(x)$ für jedes $x \in [0, \frac{\pi^2}{6}]$ gilt. Hinweis. Beweisen Sie es durch die Fallunterscheidung: $x \in \{0, \frac{\pi^2}{6}\}$ und $x \in (x_n, x_{n+1}]$ für ein $n \ge 1$.
 - ii. Zeigen Sie, dass die Reihe $\sum_{k=1}^{\infty} f_k$ gleichmäßig gegen f konvergiert. Hinweis. Für jedes $N \in \mathbb{N}$ beweisen Sie, dass für alle $x \in (0, x_{N+1}]$ $f(x) = \sum_{k=1}^{N} f_k(x)$. Wie groß ist die Zahl $|f(x) - \sum_{k=1}^{N} f(x)|$ wenn $x \notin (0, x_{N+1}]$?
 - iii. Finden Sie eine Folge $(a_k)_{n\in\mathbb{N}}$ von reellen Zahlen, sodass $\int_0^{\frac{\pi^2}{6}} f = \sum_{k=1}^{\infty} a_k$.