Analysis II für M, LaG/M, Ph 12. Tutoriumsblatt

Fachbereich Mathematik Prof. Dr. Christian Herrmann

WS 2010/11 28.1.2011

Vassilis Gregoriades Horst Heck

Aufgaben

Aufgabe T12.1

Gegeben sei der Kreisringsektor

$$K = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ und } 9 \le x^2 + y^2 \le 81\}.$$

Es sei σ die Polarkoordinatenabbildung. Geben Sie eine Menge B an, so dass $\sigma(B) = K$ gilt. Berechnen Sie den Flächeninhalt von K und den Schwerpunkt (x_S, y_S) , der durch

$$x_S := \frac{1}{\mu(K)} \int_K x \, \mathrm{d}(x, y)$$

$$y_S := \frac{1}{\mu(K)} \int_K y \, \mathrm{d}(x, y)$$

definiert ist.

Aufgabe T12.2 (Cantor Mengen)

Es sei $\alpha \in]0,1]$. Wir definieren nun rekursiv eine Folge von Mengen $C_n^{\alpha} \subset [0,1]$ welche jeweils aus der Vereinigung von 2^n abgeschlossenen disjunkten Intervallen besteht. Es sei $C_0^{\alpha} = [0,1]$. C_{n+1}^{α} entsteht aus C_n^{α} , indem man zu jedem Teilintervall [a,b] aus C_n^{α} das offene Intervall $]\frac{a+b}{2} - \frac{\alpha}{2\cdot 3^{n+1}}, \frac{a+b}{2} + \frac{\alpha}{2\cdot 3^{n+1}}[$ der Länge $\frac{\alpha}{3^{n+1}}$ herausnimmt. Z.B ist also

$$C_1 = C_0 \setminus \left] \frac{1}{2} - \frac{\alpha}{2 \cdot 3}, \frac{1}{2} + \frac{\alpha}{2 \cdot 3} \right[= \left[0, \frac{1}{2} - \frac{\alpha}{2 \cdot 3}\right] \cup \left[\frac{1}{2} + \frac{\alpha}{2 \cdot 3}, 1\right]$$

Die Menge $C^{\alpha} := \bigcap_{n \in \mathbb{N}} C_n^{\alpha}$ wird modifizierte Cantormenge genannt.

- (a) Zeigen sie, dass C^{α} abgeschlossen und $[0,1] \setminus C^{\alpha}$ dicht in [0,1] ist.
- (b) Zeigen Sie, dass C^{α} nur für $\alpha = 1$ Jordan messbar ist und bestimmen Sie in diesem Fall das Jordan Maß von C^{1} .
- (c) Für die folgenden Teilaufgaben sei nun $\alpha=1$. In diesem Fall nennt man die Menge $C:=C^1$ Cantormenge. Zeigen Sie, dass sich jedes Element aus C für genau eine Folge $(a_n)_n\in\{0,1\}^{\mathbb{N}}$ in der Form $\sum_{n=1}^{\infty}\frac{2a_n}{3^n}$ schreiben läßt. Hinweis: Benutzen Sie, dass sich jedes $x\in[0,1]$ triadisch darstellen läßt. D.h. jedes $x\in[0,1]$ läßt sich durch eine Reihe $x=\sum_{n=1}^{\infty}\frac{b_n}{3^n}$ mit $b_n\in\{0,1,2\}$ darstellen.
- (d) Zeigen Sie, dass die Funktion $\phi: C \to [0,1], \sum_{n=1}^{\infty} \frac{2a_n}{3^n} \mapsto \sum_{n=1}^{\infty} \frac{a_n}{2^n}$ surjektiv, monoton steigend aber nicht injektiv ist.

Hinweise: (i) Jeder Punkt in [0,1] hat eine binäre Darstellung. (ii) Sei $a,b \in C$ mit a < b in der Darstellung aus (c). Betrachten Sie den kleinsten Koefiizienten $a_k,b_k \in \{0,1\}$, so dass $b_k \neq a_k$ ist. (iii) Berechne $\phi(\frac{1}{3})$ und $\phi(\frac{2}{3})$.

(e) Zu $x \in [0,1] \setminus C$ sei $\alpha(x) = \inf\{y \in C \mid (y,x) \subset [0,1] \setminus C\}$. Zeigen Sie, dass die sogenannte Cantorfunktion $\psi : [0,1] \to [0,1]$,

$$x \mapsto \begin{cases} \phi(x) & \text{falls } x \in C \\ \phi(\alpha(x)) & \text{falls } x \in [0,1] \setminus C \end{cases}$$

stetig und monoton steigend ist. (Sie ist sogar in allen Punkten $x \notin C$ differenzierbar und es gilt $\psi'(x) = 0$.) **Hinweis:** Aus der Monotonie und der Surjektivität folgt schon die Stetigkeit.