Komplexitätstheorie

WS 2010/2011, Aufgabenzettel #11

AUFGABE 28:

- a) Sei $n \in \mathbb{N}$. Weisen Sie nach, dass die Menge $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ einen kommutativen Ring bildet bezüglich der Operationen $x \oplus y := (x+y)$ rem n und $x \otimes y := (x \cdot y)$ rem n. Zeigen Sie: (x rem n) + (y rem n) = (x+y) rem n und $(x \text{ rem } n) \cdot (y \text{ rem } n) = (x \cdot y)$ rem n für alle $x, y \in \mathbb{Z}$.
- b) i) Jedes $x \in \mathbb{Z}_n$ teilerfremd zu n besitzt ein multiplikatives Inverses $x^{-1} \in \mathbb{Z}_n$.
 - ii) Ist p sogar Primzahl, so gilt der Kleine Satz von Fermat: Für jedes $x \in \mathbb{Z}_p$ is $x^p = x$.
 - iii) Sind p,q teilerfremd und $a,b\in\mathbb{Z}$ mit $a\equiv b \mod p$ und $a\equiv b \mod q$, so $a\equiv b \mod pq$. Tipp: Zu teilerfremden $a,b\in\mathbb{Z}$ liefert der erweiterte Euklidische Algorithmus $r,s\in\mathbb{Z}$ mit ra+sb=1. Weiterhin dürfen Sie den Satz von Lagrange verwenden.
- c) Seien p,q verschiedene Primzahlen, $n:=p\cdot q$ und $\varphi:=(p-1)\cdot (q-1)$. Weiter sei $1\neq e\in\mathbb{Z}_{\varphi}$ teilerfremd zu φ und $d:=e^{-1}$ rem φ gemäß b). Zeigen Sie, dass die Funktionen
 - $E(\tilde{e}): \mathbb{Z}_n \setminus \{0\} \ni x \mapsto x^e \text{ rem } n \in \mathbb{Z}_n \quad \text{ und } \quad D(\tilde{d}): \mathbb{Z}_n \setminus \{0\} \ni y \mapsto y^d \text{ rem } n \in \mathbb{Z}_n$ polynomialzeitberechenbar sind und $D(\tilde{d}, E(\tilde{e}, x)) = x$ sowie $E(\tilde{e}, D(\tilde{d}, y)) = y$ erfüllen, wobei $\tilde{e} := \langle e, n \rangle$ und $\tilde{d} := \langle d, n \rangle$.
- d) Das *public-key* System aus c) heißt RSA nach seinen Erfindern RIVEST, SHAMIR und AD-LEMAN. Dabei dient \tilde{e} als öffentlicher Schlüssel und \tilde{d} als privater. Wie sind damit die Operationen Verschlüsseln und Signieren zu realisieren? Nehmen Sie an, Faktorisieren ganzer Zahlen gelänge in polynomieller Zeit. In wiefern würde RSA dadurch kompromittiert?

AUFGABE 29:

- a) Sei $\vec{x} \in \{0,1\}^n$ fest und \vec{y} ein zufälliger Binärstring der Länge n. Dann ist die Wahrscheinlichkeit, dass \vec{x} und \vec{y} sich an genau j Positionen unterscheiden, gegeben durch $\binom{n}{j} \cdot 2^{-n}$.
- b) Sei X ein 0/1-Zufallsexperiment (d.h. eine Bernoulli-Zufallsvariable), das mit (potentiell sehr kleiner) Wahrscheinlichkeit p>0 gelingt. Zeigen Sie: Bei $\frac{20}{p}$ -facher Wiederholung gelingt mindestens eines der durchgeführten Experimente mit (nahezu sicherer) Wahrscheinlichkeit $\geq 1-e^{-20}$.
- c) Sei X wieder eine Bernoulli-Zufallsvariable mit Erfolgswahrscheinlichkeit p. Berechnen Sie die Wahrscheinlichkeit, dass bei n-maliger Wiederholung mehr als die Hälfte der Versuche gelingt. Bestimmen Sie den Erwartungswert μ und die Varianz σ^2 der Zufallsvariablen $Y := \sum_{j=1}^{n} X_j$, die die Anzahl erfolgreicher Versuche beschreibt.
- d) Sei X wieder eine Bernoulli-Zufallsvariable mit $p \geq 1/2 + \varepsilon$ und $n := 40/\varepsilon^2$. Zeigen Sie, dass bei n-facher Wiederholung von X nahezu sicher mehr als die Hälfte der Versuche gelingt; und dass im Fall $p \leq 1/2 \varepsilon$ fast sicher weniger als die Hälfte der Versuche gelingt. Tipp: Chernoff-Ungleichung nachschlagen und anwenden. Was liefert die Tschebyscheff-Ungleichung?