Komplexitätstheorie

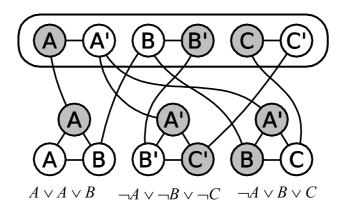
WS 2010/2011, Aufgabenzettel #4

AUFGABE 10:

Erinnern Sie sich an die Probleme 3SAT und VC aus der Vorlesung.

- a) Zeigen Sie: $VC \leq_p SAT$ direkt, d.h. ohne den Satz von Cook-Levin.
- b) Begründen Sie: Jede Knotenüberdeckung einer 2-Clique benötigt wenigstens einen Knoten; jede Knotenüberdeckung einer 3-Clique benötigt wenigstens zwei Knoten.
- c) Zeigen Sie: 3SAT \leq_p VC.

Tipp: Die folgende Zeichnung illustriert die Reduktion der 3SAT-Instanz $\Phi = (A \lor A \lor B) \land (\neg A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor C)$ auf eine VC-Instanz (G, k) mit $k := \#Variablen + 2 \cdot \#Klauseln$.



AUFGABE 11:

Sei $A \subseteq \Sigma^*$ eine Sprache. Der *Kleene-Star* von A ist die Sprache

$$A^* := \{\bar{a}_1\bar{a}_2\cdots\bar{a}_n|n\in\mathbb{N}_0,\bar{a}_i\in A\}$$
,

die also aus Verkettungen endlich vieler Wörter aus A besteht.

- a) Vergleichen Sie die zwei Bedeutungen von " Σ^* ".
- b) Zeigen Sie: \mathcal{P} ist abgeschlossen unter
 - i) Vereinigung, d.h. $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
 - ii) Durchschnitt, d.h. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
 - iii) und Komplement, d.h. $A \in \mathcal{P} \Rightarrow \Sigma^* \setminus A \in \mathcal{P}$.

Man kann zeigen: \mathcal{P} ist zudem abgeschlossen unter Kleene-Star.

- c) Zeigen Sie: Auch PSPACE ist abgeschlossen unter
 - i) Vereinigung, ii) Durchschnitt, iii) Komplement sowie iv) unter Kleene-Star.
- d) Zeigen Sie: NP ist abgeschlossen unter Vereinigung, Durchschnitt und Kleene-Star.
- e) Zeigen Sie: Die Komplemente von Sprachen in NP sind genau die von der Form

$$\left\{ \bar{x} \in \Sigma^* : \forall \bar{y} \in \Sigma^{\leq p(|\bar{x}|)} : \langle \bar{x}, \bar{y} \rangle \in K \right\}, \qquad K \in \mathcal{P} .$$

AUFGABE 12:

Eine *nichtdeterministische* Turingmaschine $\mathcal{N} = (Q, \Sigma, \Gamma, \delta)$ besitzt eine Übergangs*relation*

$$\delta \subseteq ((Q \setminus \{q_-, q_+\}) \times \Gamma) \times (Q \times \Gamma \times \{\mathsf{L}, \mathsf{N}, \mathsf{R}\}) \ .$$

Eine *Rechnung* einer solchen NTM ist eine Folge von Konfigurationen mit: Ist \mathbb{N} zuerst im Zustand q und liest a, so erfüllt der Folgezustand p, das geschriebene Zeichen b und die Kopfbewegung D: $(q,a,p,b,D) \in \delta$.

 \mathbb{N} akzeptiert eine Eingabe \vec{w} , falls es eine Rechnung von \mathbb{N} von der Startkonfiguration (s, \vec{w}) zu einer akzeptierenden Endkonfiguration gibt.

 \mathbb{N} *akzeptiert* die Sprache $L \subseteq \Sigma^*$, wenn \mathbb{M} genau die Eingaben $\vec{w} \in L$ akzeptiert. \mathbb{M} *entscheidet* L, wenn zusätzlich gilt: jede Rechnung von \mathbb{M} terminiert.

Die Laufzeit $T_{\mathcal{N}}(\vec{w})$ ist das Maximum der Laufzeit aller Rechnungen von \mathcal{N} auf Eingabe \vec{w} ; analog der Platzbedarf $S_{\mathcal{N}}(\vec{w})$.

- a) Begründen Sie, daß eine deterministische Turingmaschine ein Spezialfall einer nichtdeterministischen Turingmaschine ist.
 - Beschreiben Sie eine NTM, die das Boolesche Erfüllbarkeitsproblem SAT in polynomieller Zeit entscheidet.
- b) Skizzieren Sie die Menge aller möglichen Rechnungen einer NTM auf der festen Eingabe \vec{w} als Baum.
 - Welchen Grad (d.h. wieviele direkte Nachbarn) haben die Knoten dieses Baumes höchstens? Begründen Sie, warum es keine Entschränkung darstellt, nur NTMs mit maximal zwei möglichen Nachfolgekonfigurationen zu betrachten, d.h. mit $\operatorname{Card}\{(p,b,D):(q,a,p,b,D)\in\delta\}\leq 2$ für alle $q\in Q$ und $a\in \Gamma$.
- c) Beweisen Sie: Jede (Mehrband-) NTM $\mathcal N$ kann durch eine (Mehrband-) DTM $\mathcal M$ simuliert werden so daß gilt:

$$T_{\mathcal{M}}(n) \leq 2^{\mathcal{O}(T_{\mathcal{N}}(n))}, \qquad S_{\mathcal{M}}(n) \leq \mathcal{O}(T_{\mathcal{N}}(n) \cdot S_{\mathcal{N}}(n))$$
.

d) Sei $L\subseteq \Sigma^*$ (deterministisch) in Zeit $\mathcal{O}\big(p(n)\big)$ entscheidbar. Betrachten wir die Sprache

$$L_p' := \left\{ \vec{x} \in \Sigma^* : \exists \vec{y} \in \Sigma^{\leq p(|\vec{x}|)} : \langle \vec{x}, \vec{y} \rangle \in L \right\}$$

Beschreiben Sie eine NTM, die L'_n in polynomieller Zeit entscheidet.

e) Umgekehrt sei $K \subseteq \Sigma^*$ durch eine NTM in polynomieller Zeit entscheidbar. Beweisen Sie: Dann gibt es ein (durch eine DTM) in polynomieller Zeit entscheidbares L und $p(N) \in \mathbb{N}[N]$ mit $K = L_p'$.