Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas

WS 2010/11 17.1.-21.1.11

10. Übungsblatt zur "Mathematik I für Maschinenbau"

Gruppenübung

Aufgabe G1 (Potenzen der imaginären Einheit)

Berechnen Sie

- a) $i^{123456789}$
- b) $\sum_{k=1}^{123456789} i^k$

und geben Sie das Ergebnis in der Standardform a+ib mit $a,b\in\mathbb{R}$ an.

Aufgabe G2 (Wurzeln komplexer Zahlen)

Bestimmen Sie die Lösungen folgender Gleichungen unter Zuhilfenahme der Darstellung $z=re^{i\varphi}$. Skizzieren Sie Ihre Lösungen jeweils in der komplexen Zahlenebene.

(a)
$$z^2 = -9$$

(b)
$$z^3 = 8i$$

(c)
$$\frac{z-1}{2} = \frac{\frac{i}{2}}{z+1}$$
 $(z \neq -1)$

Aufgabe G3 (Komplexer Logarithmus)

Geben Sie die Werte folgender komplexer Zahlen

- a) ln(2+3i)
- b) $ln(\frac{1}{\sqrt{2}}\sqrt{i})$

in der Form a+ib mit reellen Komponenten $a,b\in\mathbb{R}$ an.

Hausübung

- Abgabe am 24.1.-28.1.11 in der Übung -

Aufgabe H1 (Potenzen von komplexen Zahlen)

(4 Punkte)

Berechnen Sie

- a) $(1+i)^{1002}$
- b) $\frac{1}{\sqrt[3]{i}}$

und geben Sie das Ergebnis in der Form a + ib mit reellen Komponenten a und b an.

Aufgabe H2 (Komplexe Polynome)

(5 Punkte)

Es sei $z \in \mathbb{C}$ eine Lösung der Gleichung $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$ mit reellen Koeffizienten $a_0, \ldots, a_n \in \mathbb{R}$. Zeigen Sie, dass dann auch \overline{z} Lösung der Gleichung ist.

Aufgabe H3 (Wurzeln komplexer Zahlen)

(5 Punkte)

Bestimmen Sie alle Lösungen der Gleichung $z^4 + 81i = 0$ unter Zuhilfenahme der Darstellung $z = re^{i\varphi}$. Skizzieren Sie Ihre Lösungen in der komplexen Zahlenebene.

Aufgabe H4 (Geraden und Kreise in der komplexen Zahlenebene)

(6 Punkte)

Seien $s, t \in \mathbb{R}$ und $a \in \mathbb{C}$ mit $a\overline{a} - st > 0$. Zeigen Sie, dass die Gleichung $sz\overline{z} + \overline{a}z + a\overline{z} = 0$

- (a) für s = 0 eine Gerade
- (b) für $s \neq 0$ einen Kreis

in der komplexen Ebene beschreibt. Bestimmen Sie in (b) insbesondere Mittelpunkt und Radius des Kreises.