Introduction to
 Mathematical Software Exercise 2

Problem 1 plot and plot3d

a) Let

$$
f(x)=\sin \left(\pi \cdot x^{3}\right), \quad g(x)=e^{-x^{2}}
$$

Plot $f(x)$ and $g(x)$ with $x \in[-2,2]$. Get familiar with the plots-package. Try to plot f and g into one picture.
b) Plot $h(x)=x^{2}$ and its derivative from $x=0$ to ∞. Enjoy the result!
c) How can you plot the function $\operatorname{MonkeySaddle}(x, y)=x^{3}-3 \cdot x \cdot y^{2}, x \in[-2,2], y \in[-2,2]$? Take a look into Maple's help in order to find out more about plotting.

Problem 2 Lists and Sets in Maple

a) Explain the difference between lists and sets in Maple.
b) Use Maple to find the common divisors of 23545800 , 25491186 and 229420674 . Hint: How can the package numtheory help you?
c) Solve the equation

$$
x^{4}-4 \cdot x^{3} \cdot \pi+\frac{26}{9} \cdot x^{2} \cdot \pi^{2}+\frac{4}{9} \cdot x \cdot \pi^{3}-\frac{1}{3} \cdot \pi^{4}=0
$$

and then let Maple evaluate the function sin for all solutions by using
i) map,
ii) the element-wise operator \sim (only if you are using Maple 14, as this is not implemented in Maple 11).

Hint: Remember using lists.

Problem 3 Solving Systems of Linear Equations

Try to solve the following systems of linear equations. What is happening?

$$
\begin{array}{rlr}
2 \cdot x+8 \cdot y+4 \cdot z=7 & 2 \cdot x+8 \cdot y+4 \cdot z=7 \\
6 \cdot x+2 \cdot y+4 \cdot z=9 & 6 \cdot x+2 \cdot y+4 \cdot z=9 \\
x+z=8 &
\end{array}
$$

$$
\begin{array}{rlrl}
2 \cdot x+8 \cdot y+4 \cdot z & =7 & 2 \cdot x+8 \cdot y+4 \cdot z & =7 \\
6 \cdot x+2 \cdot y+4 \cdot z & =9 & 6 \cdot x+2 \cdot y+4 \cdot z & =9 \\
3 \cdot x+8 \cdot y+5 \cdot z & =15 & 3 \cdot x+8 \cdot y+5 \cdot z & =9 \\
x+z & =8 & x+z & =8
\end{array}
$$

Hint: You do not need any matrices here. Just have a look at the solve-command.

Problem 4 Curve Sketching

Let

$$
f(x)=\frac{x^{2}+5 \cdot x-12}{2 \cdot x^{2}-12 \cdot x+16}
$$

a) Plot $f(x)$ for $x \in[-10,10]$. Use the same Interval as range of your plot. Have a look at help topic plot/options in order to find out how to do that. Also try to find out how to avoid ugly discontinuities in your plot.
b) Find the domain [Definitionsbereich] of f.
c) Find the zeros [Nullstellen] of f.
d) Find local minima and maxima of f.
e) Find inflection points [Wendepunkte] of f.
f) Calculate the area under the graph between the first two zeros (there should be at least two zeros).

Don't Drink and Derive - Episode 1

Two math professors are sitting in a pub.
"Isn't it disgusting", the first one complains, "how little the general public knows about mathematics?"
"Well", his colleague replies, "you're perhaps a bit too pessimistic."
"I don't think so", the first one replies. "And anyhow, I have to go to the washroom now."
He goes off, and the other professor decides to use this opportunity to play a prank on his colleague. He makes a sign to the pretty, blonde waitress to come over.
"When my friend comes back, I'll wave you over to our table, and I'll ask you a question. I would like you to answer: x to the third over three. Can you do that?"
"Sure." The girl giggles and repeats several times: "x to the third over three, x to the third over three, x to the third over three..."
When the first professor comes back from the washroom, his colleague says: "I still think, you're way too pessimistic. I'm sure the waitress knows a lot more about mathematics than you imagine."
He makes her come over and asks her: "Can you tell us what the integral of x squared is?"
She replies: "x to the third over three."
The other professor's mouth drops wide open, and his colleague grins smugly when the waitress adds: "..plus C."

