Einführung in die Optimierung 12. Übungsblatt

Fachbereich Mathematik
Dr. habil. Ralf Borndörfer
Dipl. Math. Konstantin Pertschik

WS 2010/2011 03./04.02.2011

Gruppenübung

Aufgabe G28 (Tangentialkegel)

$$\mathcal{X} = \{(x, y) \in \mathbb{R}^2 \mid -2x + y - 1 \le 0, \\ -2x - y - 1 \le 0, \\ x + y - 1 \le 0 \\ x - y - 1 \le 0\}.$$

- (a) Skizziere die Menge \mathcal{X} .
- (b) Bestimme die Tangentialkegel von \mathcal{X} in den Punkten $p_1=(-\frac{1}{2},0),\ p_2=(\frac{1}{2},\frac{1}{2})$ und $p_3=(0,0)$ und zeichne die Tangentialkegel von \mathcal{X} in p_1 und p_2 in die Skizze ein.
- (c) Bestimme anhand der Skizze alle lokalen und globalen Extrema der Funktion

$$f: \mathcal{X} \to \mathbf{R}: (x, y) \mapsto x^2 + y^2$$
.

Aufgabe G29 (Notwendige Optimalitätsbedingungen)

Formuliere analog zum Satz 7.2 aus der Vorlesung die notwendige Optimalitätsbedingung für den Fall, dass

- (a) es sich um ein Maximierungsproblem handelt,
- (b) die lokale Lösung \bar{x} ein innerer Punkt von \mathcal{X} ist.

Aufgabe G30 (Lokale Minima)

Betrachte das Optimierungsproblem

$$\min_{\mathbf{x} \in \mathscr{X}} f(\mathbf{x})$$

mit $f: \mathbf{R}^2 \to \mathbf{R}, \, f \in C^2.$ Überprüfe jeweils, ob der Punkt x^*

- (i) sicher kein lokaler Minimalpunkt ist,
- (ii) eventuell ein lokaler Minimalpunkt sein könnte.

(a)
$$\mathscr{X} = \{x \in \mathbb{R}^2 : x_1 \ge 1\}; x^* = (1, 2)^T; \nabla f(x^*) = (1, 1)^T.$$

(b)
$$\mathscr{X} = \{x \in \mathbb{R}^2 : x_1 \ge 1, x_2 \ge 2\}; x^* = (1, 2)^T; \nabla f(x^*) = (1, 0)^T.$$

(c)
$$\mathscr{X} = \{x \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0\}; x^* = (1, 2)^T; \nabla f(x^*) = (0, 0)^T.$$

Hausübung

Aufgabe H37 (KKT-Bedingungen)

(5 Punkte)

Gegeben sei das Optimierungsproblem

$$(P1) \begin{array}{cccc} 2x_1 + 3x_2 & \to & \max \\ x_1 + x_2 & \le & 8 \\ -x_1 + 2x_2 & \le & 4 \\ x_1, x_2 & \ge & 0 \end{array}$$

Formuliere die KKT-Bedingungen für (P1). Verifiziere für jeden Eckpunkt (algebraisch und geometrisch), ob die KKT-Bedingungen gelten. Was ist die globale Lösung?

Aufgabe H38 (Tangentialkegel)

(4 Punkte)

Seien $\mathcal{X}_1, \mathcal{X}_2 \subset \mathbb{R}^n$ abgeschlossen. Beweise oder widerlege:

- (a) Sei $x \in \mathcal{X}_1 \cap \mathcal{X}_2$ und bezeichne \mathcal{Z}_1 und \mathcal{Z}_2 den Tangentialkegel von \mathcal{X}_1 bzw. \mathcal{X}_2 in x. Dann ist der Tangentialkegel von $\mathcal{X}_1 \cap \mathcal{X}_2$ in x die Menge $\mathcal{Z}_1 \cap \mathcal{Z}_2$.
- (b) Sei $x \in \mathcal{X}_1 \cup \mathcal{X}_2$ und bezeichne \mathcal{Z}_1 und \mathcal{Z}_2 den Tangentialkegel von \mathcal{X}_1 bzw. \mathcal{X}_2 in x. Dann ist der Tangentialkegel von $\mathcal{X}_1 \cup \mathcal{X}_2$ in x die Menge $\mathcal{Z}_1 \cup \mathcal{Z}_2$. (Für den Fall, dass $x \notin \mathcal{X}$ gilt, sei der Tangentialkegel von \mathcal{X} in x als die leere Menge definiert.)

Aufgabe H39 (Slater-Bedingung)

(4 Punkte)

Gegeben sei das konvexe Optimierungsproblem

$$\min f(x)$$
 s.t. $c(x) \le 0$,

mit konvexen, zumindest einmal stetig differenzierbaren Funktionen $f: \mathbb{R} \to \mathbb{R}^n$ und $c: \mathbb{R}^n \to \mathbb{R}^m$. Die sogenannte Slater-Bedingung lautet: Es gibt einen Punkt $y \in \mathbb{R}^n$, mit c(y) < 0.

Zeige, dass aus der Slater-Bedingung die Constraint Qualification folgt, d.h. für alle $x \in \mathcal{X}$ gilt $\mathcal{Z}(x) = \mathcal{L}_{\mathcal{X}}(x)$.