Einführung in die Optimierung 5. Übungsblatt

Fachbereich Mathematik
Dr. habil. Ralf Borndörfer
Dipl. Math. Konstantin Pertschik

WS 2010/2011 25./26.11.2010

Gruppenübung

Aufgabe G14 (Duale Programme)

Gegeben sei das folgende lineare Problem

Formuliere das duale Problem zu (P).

Hinweis: Bringe (P) zunächst in natürliche Form.

Aufgabe G15 (Farkas-Lemma)

Beweise: Seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Dann hat genau eines der beiden folgenden Systeme eine Lösung:

$$Ax \le b \qquad \qquad \begin{matrix} y^T A &=& 0 \\ y & \ge & 0 \\ y^T b & < & 0 \end{matrix}$$

Aufgabe G16 (Modellierung)

Lässt sich das folgende Optmierungsproblem als LP formulieren? Wenn ja, dann gib eine solche Formulierung an. Wenn nicht, begründe dies.

$$\begin{array}{lll} \min & \max\{x_1,x_4\} \\ \text{s.t.} & |x_1+x_2+x_3+x_4| & \leq & 10 \\ & \max\{x_1,x_2\} & \leq & \min\{x_3,x_4\} \\ & \frac{x_2-x_4}{x_1+x_3+1} & \leq & 4 \\ & x_1,x_2,x_3,x_4 & \geq & 0 \end{array}$$

1

Hausübung

Aufgabe H14 (Zulässige Richtungen (feasible directions))

(5 Punkte)

Beweise (proof) oder widerlege (or counterproof) den folgenden Satz:

 \bar{x} ist genau dann Optimallösung von

$$\max c^{T} x$$
s.t. $Ax = b$ (1)
$$x \ge 0,$$

 $A \in \mathbb{R}^{m,n}, b \in \mathbb{R}^m$, wenn gilt:

$$A\bar{x} = b$$

$$\bar{x} \ge 0$$

$$c^T s \le 0 \ \forall s \in \mathcal{Z}(\bar{x}) := \{s : As = 0, s_{\{1,\dots,n\} \setminus \text{SUDD}(\bar{x})} \ge 0\}.$$
(2)

Aufgabe H15 (Farkas-Lemma)

(5 Punkte)

Beweise: Für dimensionsverträgliche (*compatible*) Matrizen A, B, C und D sowie Vektoren a, b, u und v hat genau eines der beiden folgenden Systeme eine Lösung:

Aufgabe H16 (Modellierung)

(5 Punkte)

In einem Unternehmen mit Kuppelproduktion werden aus den Rohstoffen R_i , i=1,2,3, die Zwischenprodukte Z_j , j=1,2 hergestellt und daraus die Fertigprodukte P_k , k=1,2 angefertigt. Die Fertigungsstruktur ist in nachstehenden Inputmatrizen beschrieben (zur Herstellung einer ME von P_1 werden 3 ME von Z_1 , 2 ME von Z_2 und 0 ME von Z_3 benötigt; analog sind übrigen Matrixeinträge zu interpretieren). Die Verkaufspreise für die Fertigprodukte, die Einkaufspreise für die Rohstoffe sowie die Mengenbegrenzungen für die Rohstoffe (in dem betrachteten Planungszeitraum von einem Monat) sind in folgender Tabelle angegeben:

	Produkt	Ein- bzw. Verkaufspreis (GE/ME)	Maximale Einkaufsmenge (ME)
	P_1	36	_
	P_2	40	_
	R_1	2	48
	R_2	1	58,5
	R_3	3	20

Welche Mengen von P_1 und P_2 sollen in dem genannten Planungszeitraum hergestellt werden, damit die Summe der Deckungsbeträge maximiert wird? (Mathematisches Modell, Lösung mit Hilfe einer Skizze)

Hinweis: Für das Produkt P_k gilt: Deckungsbeitrag/ME=Verkaufspreis/ME minus Einkaufspreis der Rohstoffe, die in eine ME von P_k eingehen.