11. Übung Geometrie für Lehramt

Aufgabe 1. Sei $\alpha:O,\vec{a},\vec{b}$ ein orthonormales Koordinatensystem der Ebene und sei $\beta:P,\vec{c},\vec{d}$ das Koordinatensystem mit

$$P = 2\vec{a} + O$$
 $\vec{c} = \frac{1}{\sqrt{2}}(\vec{a} - \vec{b})$ $\vec{d} = \frac{1}{\sqrt{2}}(\vec{a} + \vec{b})$

- 1. Ist β orthonormal? Warum bzw. warum nicht?
- 2. Bestimme die homogene Koordinatentransformationsmatrix $_{\alpha}\tilde{T}_{\beta}$
- 3. Bestimme die Koordinaten des Punktes $R=-2\vec{c}+\vec{d}+P$ im System α
- 4. Bestimme die Inverse von $_{\alpha}\tilde{T}_{\beta}$
- 5. Bestimme die homogenen Koordinaten des folgenden Punktes im System β

$$Q := \vec{a} + 2\vec{b} + O \qquad .$$

Aufgabe 2. Sei $\alpha:O_{\alpha},\vec{a},\vec{b}$ ein orthonormales Koordinatensystem der Ebene. Beschreibe die folgenden affinen Abbildungen durch affine Matrizen bezüglich homogener Koordinaten bzgl. α

- 1. Die Parallelverschiebung um den Vektor $\vec{a}-2\vec{b}$.
- 2. Die Achsenspiegelung an der Geraden durch die Punkte $\vec{a}+O$ und $\vec{a}+\vec{b}+O$.
- 3. Die 30°-Drehung, deren Zentrum der Punkt $\vec{a}+O$ ist. (Hinweis: $\sin 30^\circ=\frac{1}{2}$ und $\cos 30^\circ=\frac{1}{2}\sqrt{3}$.)

Aufgabe 3. Was erhält man als Hintereinanderausführung zweier Spiegelungen in der Ebene? Begründung?

Aufgabe 4. Sei σ eine zentrische Streckung mit Zentrum O. Begründen Sie, dass für alle A,B gilt

$$\angle AOB \equiv \angle \sigma(A)O\sigma(B)$$

Aufgabe 5. (auf Vorrat) Sei ABC ein Dreieck und ϕ eine affine Abbildung der Ebene. Begründen Sie, dass ϕ genau dann eine Bewegung der Ebene ist, wenn $\phi(A)\phi(B)\phi(C)$ ein zu ABC kongruentes Dreieck ist.