Nichtlineare Optimierung 12. Übungsblatt

Fachbereich Mathematik Prof. Dr. Stefan Ulbrich

M.Sc. Franziska Kartzow Dipl.-Math. Sebastian Pfaff WS 2010/2011 4. Februar 2011

Rechnerübung

Aufgabe R1 (Quadratisches Penalty-Verfahren)

Programmieren Sie das quadratische Penalty-Verfahren aus Algorithmus 16. Minimieren Sie hierbei die Penalty-Funktion

$$P_{\rho}(x) = f(x) + \frac{\rho}{2}(\|(c(x))_{+}\|^{2} + \|h(x)\|^{2})$$

unter Verwendung Ihrer Implementierung des globalen Newton-Verfahrens oder des BFGS-Verfahrens aus den vergangenen Rechnerübungen. Sie können auch die Datei GlobalesNewton.m von der Veranstaltungsseite verwenden.

Erhöhen Sie den Penalty-Parameter (in Schritt 3 des Penalty-Verfahrens) um den Faktor 10, also durch die Vorschrift $\rho_{k+1} = 10\rho_k$ und wählen Sie $\rho_0 = 1$. Verwenden Sie für das äußere Verfahren – also das quadratische Penalty-Verfahren – die Abbruchbedingung $||(c(x_k))_+||+||h(x_k)|| \le 10^{-4}$. Führen Sie als zusätzliches Abbruchkriterium eine maximale Anzahl an äußeren Iterationen ein.

Hinweis: In jeder Iteration des äußeren Verfahrens müssen Sie die quadratische Penaltyfunktion P_{ρ} neu aufstellen. Zuweisungen der Form f(x) := g(x,y) für einen festen Wert y können in Matlab durch den Ausdruck f=@(x) g(x,y) realisiert werden. Desweiteren könnte der Datentyp Cell-Array hilfreich sein.

Testen Sie Ihr Verfahren an dem Problem

min
$$100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

s.t. $x_2 + 3x_1 \le 0$

mit Startwerten $x_0 = (-1, 0.5)$ und $x_0 = (4, 5)$ und

$$\begin{array}{ll} \min & 1000-x_1^2-2x_2^2-x_3^2-x_1x_2-x_1x_3\\ \text{s. t.} & x_1^2+x_2^2+x_3^2-25=0\\ & 8x_1+14x_2+7x_3-56=0 \end{array}$$

mit Startwert $x_0 = (3, 0.2, 3)$.

Aufgabe R2 (Globalisiertes SQP-Verfahren - Für den Übungsschein ist nur Aufgabe R1 zu lösen)

Programmieren Sie das Globalisierte SQP-Verfahren aus Algorithmus 21. Verwenden Sie $H_k = \nabla_{xx}^2 L(x_k, \lambda_k, \mu_k)$, sowie $\gamma = 10^{-3}$. Um das Teilproblem SQP_k zu lösen, verwenden Sie die Funktion quadprog. Iterieren Sie solange, bis entweder (x_k, λ_k, μ_k) die KKT-Bedingungen (bis auf eine gewisse Toleranz) erfüllen oder eine maximale Anzahl von Iterationen erreicht ist.

Testen Sie Ihr Programm an den Problemen aus Aufgabe R1.

Hausübung

Aufgabe H1 (Primal-duale Innere-Punkte-Verfahren bei linearer Programmierung)
Wir betrachten das (primale) lineare Programm

(6 Punkte)

$$\min c^T x$$
 s.t. $Ax = b, x \ge 0$ (PLP)

und das zugehörige duale lineare Programm

$$\max b^T y \quad \text{s.t.} \quad A^T y + s = c, \ s \ge 0. \tag{DLP}$$

- (a) Formulieren Sie zu (PLP) bzw. (DLP) jeweils das logarithmische Barriere-Problem $(BPLP_{\tau})$ bzw. $(BDLP_{\tau})$ bezüglich der Vorzeichenbedingungen, mit Barriere-Parameter $\tau > 0$. Lassen Sie die Gleichungsnebenbedingungen hierbei unverändert.
- (b) Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (i) Das primale logarithmische Barriere-Problem ($BPLP_{\tau}$) besitzt eine Lösung x_{τ} .
 - (ii) Das duale Barriere-Problem $(BDLP_{\tau})$ besitzt eine Lösung (y_{τ}, s_{τ}) .
 - (iii) Die sogenannten zentralen Pfadbedingungen

$$A^{T}y + s = c,$$

$$Ax = b,$$

$$x > 0, s > 0, x_{i}s_{i} = \tau, \quad \forall i = 1 \dots n$$

besitzen eine Lösung $(x_{\tau}, y_{\tau}, s_{\tau})$.

Hinweis: Lineare Nebenbedingungen erfüllen immer die (ACQ).

Aufgabe H2 (Maratos-Effekt)

(8 Punkte)

Betrachten Sie das Problem

$$\begin{aligned} & \min \quad f(x) := 2(x_1^2 + x_2^2 - 1) - x_1 \\ & \text{s.t.} \quad h(x) := x_1^2 + x_2^2 - 1 = 0. \end{aligned}$$

- (a) Zeigen Sie, dass $\bar{x}=(1,0)^T$ das globale Minimum ist und bestimmen Sie den zugehörigen Lagrangemultiplikator $\bar{\mu}$. Zeigen Sie, dass das lokale SQP-Verfahren für Startpunkte $(x_0,\mu_0)\in B_\delta(\bar{x},\bar{\mu}),\ \delta>0$ klein genug, Q-superlinear gegen $(\bar{x},\bar{\mu})$ konvergiert.
- (b) Seien $x_k \in Z \setminus \{\bar{x}\}$ und $\mu_k < -1$ beliebig. Zeigen Sie, dass für die Lösung s_k von (SQP_k) gilt, dass

$$|h(x_k + s_k)| > |h(x_k)|$$
 und $f(x_k + s_k) > f(x_k)$.

Damit wird der volle Schritt von der Bewertungsfunktion $P_{l_1,\rho}$ abgelehnt. Da $x_k \in Z \setminus \{\bar{x}\}$ und $\mu_k < -1$ für (x_k,μ_k) beliebig nahe bei $(\bar{x},\bar{\mu})$ gilt, konvergiert das globalisierte SQP-Verfahren hier also nicht lokal Q-superlinear.