
Lecture 8 — Differentiable Functions
Let U ⊆ R and f : U → R.

Assume that we want to construct the tangent [Tangente] t to the graph of f at a fixed point
x0 ∈ U . Since t goes through the point (x0, f (x0)), it suffices to determine the slope [Steigung]
of t.

To this end, we first draw a line lx through the points (x0, f (x0)) and (x , f (x)). This line
intersects the graph of f and is not yet the required tangent. But if we now move the point x
towards x0 on the x-axis, the line lx gets closer and closer to the tangent t. In the limit x → x0
(if it exists), the line lx and the tangent t coincide. This process is illustrated in Figure 8.1

Now have a closer look at the slope of lx . It is

f (x)− f (x0)
x − x0

.

Since lx tends to t as x tends to x0, the slope of t is the limit

lim
x→x0

f (x)− f (x0)
x − x0

.

8.1 Definition of differentiability

Definition 8.1.1. Let f : (a, b)→ R be a function and x0 ∈ (a, b). Then f is called differentiable
[differenzierbar] in x0 if the limit

lim
x→x0

f (x)− f (x0)
x − x0

exists and coincides for all sequences xn→ x0. The derivative [Ableitung] of f in x0 is denoted
by f ′(x0). (Read: f prime of x0.)

If f is differentiable in each point of (a, b) then it is called differentiable on (a, b). In this
case, f ′ is a function (a, b)→ R.

x0

t

x

lx

Figure 8.1: The tangent t in a point x0 can be constructed as the limit of a sequence of secants.
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(The last step is more abstract than it seems. It takes us in one stride from a single value
f ′(x0) to a function f ′)

Theorem 8.1.2. If f : (a, b)→ R is differentiable in x0 then f is also continuous in x0.

Proof. Let x0 ∈ (a, b). Then the limit

lim
x→x0

f (x)− f (x0)
x − x0

exists since f is differentiable in x0. As x goes to x0, the denominator converges to zero. Hence
the limit can only exist if the numerator also converges to zero. If the numerator converges to
zero then f (x) converges to f (x0). In other words,

lim
x→x0

f (x) = f (x0).

This is our definition of continuity.

On the other hand, continuity of f does not imply differentiability as the following example
will show:

Example 8.1.3. Consider the function

f : R−→R
x 7−→|x |.

We look at x0 = 0 and show that f is continous in x0. We choose a sequence (xn)n∈N ⊂ R
which approaches 0 from above (we denote this by xn↘ 0). Then this yields

lim
xn↘0

f (xn) = lim
xn↘0
|xn|

xn>0
= lim

xn↘0
xn = 0.

If we consider a sequence xn which approaches 0 from below (we denote this by xn↗ 0), then
we get

lim
xn↗0

f (xn) = lim
xn↗0
|xn|

xn<0
= lim

xn↗0
−xn = 0.

This shows that f is continous in x0.
Now let us check whether f is differentiable. Again we choose a sequence xn↘ 0. This yields

lim
xn↘0

f (xn)− f (0)
xn− 0

= lim
xn↘0

f (xn)
xn

= lim
xn↘0

�

�xn

�

�

xn

xn>0
= lim

xn↘0

xn

xn
= 1.

On the other hand, if we have a sequence xn↗ 0, we get

lim
xn↗0

f (xn)− f (0)
xn− 0

= lim
xn↗0

f (xn)
xn

= lim
xn↗0

�

�xn

�

�

xn

xn<0
= lim

xn↗0

−xn

xn
=−1.

We see that the limits do not coincide, which means that f is not differentiable in x0 = 0.
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While a differentiable function is continous, the derivative of a continous function need not
be continous.

Another way to write the definition

f ′(x0) = lim
x→x0

f (x)− f (x0)
x − x0

of the derivative of f at x0 is to write the sequence xn with limit x0 as x0 + h and look at the
limit h→ 0. Then we get

f ′(x0) = lim
h→0

f (x0+ h)− f (x0)
h

.

Now we look at a few examples and determine some derivatives:

Example 8.1.4.

(i) f : R→ R : x 7→ c · x with c ∈ R.

f ′(x0) = lim
xn→x0

cxn− cx0

xn− x0
= lim

xn→x0

c(xn− x0)
xn− x0

= c.

(ii) f : R→ R : x 7→ x k.

f ′(x0) = lim
xn→x0

x k
n − x k

0

xn− x0
= lim

xn→x0
(x k−1

n + x k−2
n x0+ . . .+ xn−1

0 ) = kx k−1
0 .

8.2 Properties of differentiable functions

Theorem 8.2.1 (Algebra with differentiable functions). Let f , g : (a, b) → R be two functions
differentiable in x0. Then

• f ± g

• f · g

• f
g

• f ◦ g

is differentiable and the derivative is

• ( f ± g)′ = f ′± g ′

• ( f g)′ = f ′g + f g ′(product rule [Produktregel])

• f
g
= f ′g− f g′

g2 (quotient rule [Quotientenregel])

• ( f ◦ g)′ = f ′ ◦ g · g ′ ( chain rule [Kettenregel])
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Proof.

• f ± g: Exercise.

• f · g:

lim
xn→x0

( f g)(xn)− ( f g)(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (x0)g(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (x0)g(x0) +

=0
︷ ︸︸ ︷

f (xn)g(x0)− f (xn)g(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (xn)g(x0) + f (xn)g(x0)− f (x0)g(x0)
xn− x0

= lim
xn→x0

f (xn)(g(xn)− g(x0)) + ( f (xn)− f (x0))g(x0)
xn− x0

= lim
xn→x0

f (xn)(g(xn)− g(x0))
xn− x0

+
( f (xn)− f (x0))g(x0)

xn− x0

= lim
xn→x0

f (xn)
(g(xn)− g(x0))

xn− x0
+ g(x0)

( f (xn)− f (x0))
xn− x0

= lim
xn→x0

f (xn) lim
xn→x0

(g(xn)− g(x0))
xn− x0

+ lim
xn→x0

g(x0) lim
xn→x0

( f (xn)− f (x0))
xn− x0

= f (x0)g
′(x0) + g(x0) f

′(x0).

• f
g
: Exercise.

• f ◦ g: (we do the proof in the case where g is injective). Write

( f ◦ g)(xn)− ( f ◦ g)(x0)
xn− x0

=
( f ◦ g)(xn)− ( f ◦ g)(x0)

g(xn)− g(x0)
g(xn)− g(x0)

xn− x0

Here we used the injectivity of g, which assures that g(xn) − g(x0) 6= 0. Now we can
determine the limit:

lim
xn→x0

( f ◦ g)(xn)− ( f ◦ g)(x0)
xn− x0

= lim
xn→x0

( f ◦ g)(xn)− ( f ◦ g)(x0)
g(xn)− g(x0)

g(xn)− g(x0)
xn− x0

= lim
xn→x0

f (g(xn))− f (g(x0))
g(xn)− g(x0)

g(xn)− g(x0)
xn− x0

= lim
xn→x0

f (g(xn))− f (g(x0))
g(xn)− g(x0)

lim
xn→x0

g(xn)− g(x0)
xn− x0

= f ′(g(x0)) · g ′(x0).
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Now we shall have a look at a useful application from everday life. At first we have the
following definition:

Definition 8.2.2. Let f : (a, b)→ R be a function and x0 ∈ (a, b). Then x0 is called

• local minimum [lokales Minimum] if there exists an ε > 0 such that for all x ∈ (x0−ε, x0+
ε) f (x0)≤ f (x)

• local maximum [lokales Maximum] if there exists an ε > 0 such that for all x ∈ (x0−ε, x0+
ε) f (x0)≥ f (x).

• local extremum [lokale Extremstelle] if x0 is either a local maximum or a local minimum.

Now we can formulate the following important theorem:

Theorem 8.2.3 (Local extrema). Let f : (a, b)→ R be a differentiable function and x0 ∈ (a, b).
If f has a local extremum in x0 then f ′(x0) = 0.

Proof. Let x0 be a local extremum. Without loss of generality we may assume that x0 is a local
maximum; i.e., f (x0)≥ f (x) for all x ∈ (x0− ε, x0+ ε). Then

f ′(x0) = lim
h→0,h<0

f (x0+ h)− f (x0)
h

≥ 0

since f (x0+ h)− f (x0)≤ 0 and h< 0. But on the other hand

f ′(x0) = lim
h→0,h>0

f (x0+ h)− f (x0)
h

≤ 0

since f (x0+h)− f (x0)≤ 0 and h> 0. Since f is differentiable these two limits have to coincide,
which yields f ′(x0) = 0.

8.3 The Mean Value Theorem

Theorem 8.3.1 (Mean Value Theorem [Mittelwertsatz]). Let f : [a, b] → R be a differentiable
function. Then there is a real number c, a < c < b, such that

f ′(c) =
f (b)− f (a)

b− a
.

This theorem seems rather technical, but it is beautifully illustrated by drawing a wavy graph
and showing that there is a point where the tangent has the same slope as the line through the
endpoints of the graph; see Figure 8.2 for an illustration.

One should point out that c need not be unique. Also this theorem is a typical existence
theorem. It tells us that something exists, but gives us no hints how to find it. Even for simple
functions it might be impossible to actually determine the value of such a c.

5



a b

f (a)

f (b)

c

f (c)

Figure 8.2: An illustration for the mean value theorem. The tangent through (c, f (c)) has slope
f (b)− f (a)

b−a
.

8.4 One application and tool: L’Hôspital’s Rule

The following theorem yields another way to find limits:

Theorem 8.4.1 (L’Hôspital’s Rule [Regel von L’Hôspital]). Let f , g : (a, b) → R be differentiable
functions and x0 ∈ (a, b). Furthermore, let lim

x→x0
f (x) = lim

x→x0
g(x) = 0. We consider the function

f (x)
g(x)

.

If lim
x→x0

f ′(x)
g′(x)

exists then lim
x→x0

f (x)
g(x)

exists and

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g ′(x)

.

Remark 8.4.2.

• We can only apply this rule for limits where the variable approaches a real number, i.e.,
not∞. So if we have

lim
n→∞

sin
�

1
n

�

n,

then we cannot apply l’Hôspital’s rule. First we have to substitute the sequence by (for
example) k := 1

n
. As n goes to infinity, k goes to 0. This yields

lim
n→∞

n sin
�

1
n

�

= lim
k→0

sin(k)
k

.

Now we can apply l’Hôspital’s rule and we get

lim
n→∞

n sin
�

1
n

�

= lim
k→0

sin(k)
k
= lim

k→0

cos(k)
1

= 1.
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• Also note that it is crucial that lim
x→x0

f (x) = lim
x→x0

g(x) = 0. Consider, for instance,

lim
x→0

sin x

cos x
=

sin 0

cos 0
=

0

1
= 0

but

lim
x→0

(sin x)′

(cos x)′
= lim

x→0

cos x

− sin x
=−∞.

f

g

x0

Figure 8.3: Two functions f , g : R → R with f (x0) = g(x0) = 0. By l’Hôspital’s rule,
lim

x→x0

f (x)
g(x)
= lim

x→x0

f ′(x)
g′(x)

.
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