
Lecture 7 — Continuous Functions
We talked about functions in Chapter 4. Recall that a function f : X → Y assigns to every

element x of the set X an element y = f (x) of the set Y .

7.1 Everyday examples

Example 7.1.1.

(i) If we drive a car with constant velocity v then we know from physics that the distance s
we travelled at time t equals

s = s0+ v · t,

where s0 is the initial distance at time t = 0. We see immediately that s depends on the
time t, i.e., s is a function in t.

s : [0,∞) −→ �
t �−→ s0+ v · t

The graph of this function is illustrated in Figure 7.1 (a).

We see that small changes of the variable t induce small changes in the distance s.

(ii) When we use the train from Darmstadt to Frankfurt and we want to catch another train in
Frankfurt, then we are interested in the delay of the first train. We look at the function

w : [0,∞)−→ [0,∞)

which assignes to each delay t the time w(t) we have to wait in Frankfurt. If we assume
the first train to arrive at x x : 48 and the next train to depart at x x : 56, then a delay of 3
minutes means that we have to wait 5 minutes. And a delay of 8 minutes means that we
have to wait 0 minutes. But if we had a delay of 8+ � minutes, then we will not catch the
train and we will have to wait for the next one (assume it departs in 30 minutes).

So a delay of 8 minutes means no waiting time. But if the delay is only a little bit more
than that we will have to wait for almost 30 minutes. This means a small change in the
variable t can result in a big change of the variable w.

The graph of this function is illustrated in Figure 7.1 (b).
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(a) The function s : [0,∞)→ � in (i)
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(b) The function w : [0,∞) → [0,∞) in (ii) is not
continuous.

Figure 7.1: The graphs of the functions in Example 7.1.1.

7.2 Definitions of continuity

Definition 7.2.1 (�-δ-condition). A function f : X → Y is called continuous [stetig] in a point

x0 ∈ X if for all � > 0 there is a δ > 0 such that

�� f (x)− f (x0)
��< � for all x ∈ X with

��x − x0

��< δ. (7.1)

Equivalently, using quantifiers, this reads: f : X → Y is continuous in x0 ∈ X if

(∀� > 0)(∃δ > 0)(∀x ∈ X )
��x − x0

��< δ⇒
�� f (x)− f (x0)
��< �.

Now let us have another look at our examples:

(i) Fix some value t0. We have

��s(t0)− s(t)
��=
��s0+ v · t0− (s0+ v · t)

��=
��v · t0− v · t
��=
��v (t0− t)
��= |v | ·
��t0− t
�� .

Now choose � > 0 arbitrarily and assume that

��s(t0)− s(t)
�� < �. We have to find δ > 0

such that

��s(t0)− s(t)
��< � holds for all t with

��t0− t
��< δ. From the inequality

��s(t0)− s(t)
��= |v | ·
��t0− t
��< �

we see that we can pick δ := �
|v | and we can easily verify that this will work. This proves

that s is continuous.

Note also that δ may depend on �.

(ii) Consider t0 = 8. We will show that w is not continuous in t0. I.e., we have to show

that there is some � > 0 such that for each δ > 0 there is some t with

��t0− t
�� < δ but��w(t0)− w(t)

��> �.
Choose � = 1 and let δ > 0. Set t := t0 +min

�
1, δ

2

�
. Then

��t0− t
�� = min
�

1, δ
2

�
< δ but��w(t0)− w(t)

��= |w(t)|= 30−min
�

1, δ
2

�
> 1.

Hence, w is not continuous at t0 = 8.
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If we have a function �→ �, then there is another characterisation of continuity:

Theorem 7.2.2 (Limit test). Let f : �→ � be a function defined on a neighbourhood U of x0 ∈ �
but not necessarily defined in x0. Then there are equivalent:

(a) f is continuous in x0,

(b) for every convergent sequence (xn)n∈� ⊂ X with limit x0 we have that

lim
n→∞

f (xn) = f
�

lim
n→∞

xn

�
= f (x0).

Proof. “⇒” Assume that the �-δ-condition is satisfied in x0. We need to show that for any
sequence xn → x0 in the domain, the image sequence satisfies f (xn)→ f (x0). Let � > 0
be arbitrary, and pick a δ > 0 as in Equation (7.1) on page 2. Since xn → x0, we can
choose N ∈ � such that

��xn− x0

��< δ for all n≥ N .

But then Equation (7.1) implies

�� f (xn)− f (x0)
��< � for all

��xn− x
��< δ,

which is equivalent to

�� f (xn)− f (x0)
��< � for all n≥ N ,

which implies that f (xn) converges to f (x0).

“⇐” Assume that the limit condition holds. We prove the continuity of f by contradiction.

Suppose there exists � > 0 for which we cannot find δ > 0 such that Equation (7.1) holds.
In particular, (7.1) will not be satisfied for δ = 1

n
for any n ∈ �. Thus, there exists xn with��xn− x0

��< 1
n

such that
�� f (xn)− f (x0)
��> �.

Hence f (xn) does not converge to f (x0).

Example 7.2.3.

(i) Consider the function f : �→ � : x �→ x2. Choose x0 = 0. Then the function has the limit
0 in x0. For a proof, we need to choose any sequence (xn)n∈� with limn→∞ xn = 0. Now
we have to show that the sequence fn = x2

n for n ∈ � converges to 0. This, however, is not
difficult using our theorem about algebra with sequences:

lim
n→∞

x2 = lim
n→∞

xn · lim
n→∞

xn = 0 · 0= 0.
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(ii) Now let us look at a more complicated example which does not have any limit in 0. Let
f : � \ {0}→ � : x �→ sin

�
1
x

�
.

Consider the sequence xn =
1
π·n for n ∈ �. Then

f (xn) = sin
�

1
xn

�
= sin(π · n) = 0.

Now consider the sequence yn =
2

π·(4n+1) . This again gives a sequence of function values:

f (yn) = sin
�

1
yn

�
= sin
�
π·(4n+1)

2

�
= sin
�

2nπ+ π
2

�
= 1

So this time we get 1 as the limit of our sequence.
For two different sequences we have obtained two different limits. Therefore, by the limit
test (Theorem 7.2.2), this function is not continuous in 0.

7.3 Properties of continuous functions

Theorem 7.3.1 (Algebra with continuous functions). Let f , g : U → � be two continuous func-
tions. Then

• f ± g,

• f · g,

• f
g
, and

• f ◦ g

are continuous (where they are defined).

Proof. This will be an exercise for you :-).

Example 7.3.2. The following are examples of continuous functions:

(i) All polynomials are continuous. This follows easily from the theorem about algebra with
continuous functions and from the fact that the constant functions and the identity function
on � are continuous.

(ii) We define the following functions:

exp : � −→ �

x �−→
∞�

n=0

xn

n!
sin : � −→ �

x �−→
∞�

n=0

(−1)n
x2n+1

(2n+ 1)!
cos : � −→ �

x �−→
∞�

n=0

(−1)n
x2n

(2n)!

These functions are continuous.
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(iii) Rational functions are continuous on the subset of � where the denominator is different
from 0.

The following is an important theorem about continuous functions:

Theorem 7.3.3 (Intermediate Value Theorem [Zwischenwertsatz]). Let f : [a, b]→ � be contin-
uous and let c be strictly between f (a) and f (b). Then there is an x strictly between a and b such
that f (x) = c.

We will not give a proof because it is very technical. See Figure 7.2 for an illustration.

a b

f (a)

f (b)

f (x) = c

x

Figure 7.2: f is a continuous function [a, b]→ �. Moreover, f (a) < c < f (b) is chosen. By the
intermediate value theorem there is x ∈ [a, b] such that f (x ) = c.
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