Lecture 6 — Series
6.1 Partial sums and convergence

Definition 6.1.1.

(i) Let (a,),ey be a sequence. Then a series [Reihe] is the sequence (s,),cy Of partial sums
[Partialsummen]

Spi=a;+...ta,.
Usually we write 2?21 a, for the sequence (s,),en and call a,, its terms [Summanden].
(ii) In case the series (s, ),y converges tos € R we write

o0 n

Zan = lim a; = lim s, =s.

n—oo n—oo
n=1 k=1

Remark 6.1.2. In the convergent case, the notation Zzozl a, has two different meanings:
* The sequence of partial sums (a; + ...+ a,) ey, and

* a number s € R, namely the limit of the partial sums; it is also called the value [Wert] of
the series.

Example 6.1.3.

(i) Decimal expansion [Dezimaldarstellung]: The dec1ma] expanszon of a number x € R can be

defined as a series. The partial sums are s, = d, —|— —I— .+ W’ that is, ﬁmte expans1ons
up to the n-th digit. The limit is x = lims,,. For mstance n=314...=3 —|— 5 1 100 100 +.
(ii)) We claim Z 1 n(n+ 5 =1, i.e., we claim for the sequence s,, of partial sums that
L L 1
Spi=—F—+.. F— = as n— oo.
n"T1.2 2.3 n(n+1)
Proof: Writing
1 —(n%—1)+n? n—1 n
= ( ) =— + , forn €N,
n(n+1) n(n+1) n n+1

we see we can apply a telescope sum trick:

1 12 2 3 1
0= (-0+g)+(-3+3)+ (-53+3) ()
n 1

=—0+ = — 1 asn — oo.
n+1 1421

n




Example 6.1.4. If we are careless, we can easily run into contradictions:
0=1-D+01-D+...=14+(-1+D)+(-14+1)+...=1.
In naive language, infinite sums are not associative.

The following theorem give some necessary condition on a sequence in order for the corre-
sponding series to converge:

Theorem 6.1.5. If Z:o:l a,, converges then lim a, = 0. (We also write a, — 0 as n — 00.)
n—oo

. n
Proof. We have a, =s, —s,_; for n > 2 and thus, using s, =Y, _, a; —s,
lim a, = lim (s, —s,_;) = lim s, — lims,_; =s —s=0. O
n—oo n—oo n—oo

n—00

6.2 Important examples

In Theorem 6.1.5 we have seen that the summands of a convergent series form a null sequence.
The converse, however, does not hold as the following example shows:

Example 6.2.1. The harmonic series [harmonische Reihe]

i1—1+1+1+1+
Sk 273 47

has terms a,, = % forming a null sequence.
Nevertheless, the sequence of partial sums is unbounded. Indeed, for n > 1 consider the
subsequence [Teilfolge]

1 1
Szn—1+§+§+ +§
1 1 1 1 1 1 1
—1+5+(§+Z)+(§+...+§/)+. +(2n1+1+ +§)
>1/2 >1/2 >1/2

Thus, the harmonic series does not converge.
Moreover (s, )ney IS increasing, and hence our argument shows that Y, % diverges to infinity;

as for sequences we denote this symbolically by ) % = 00.
A very important series will turn out to be the following:

Theorem 6.2.2. Let x € R. The geometric series [geometrische Reihe]

o0
K=14+x+x2+x3+...
k=0

converges for all |x| <1 to

> =
x" = ,
— 1—x
while for |x| > 1 the series diverges.

2



Proof. The geometric sum gives

n 1_Xn+l
s =ij:1—|—x+x2+ +x"=— for x #1 (6.1)
"= T . .

j=0

When |x| < 1 we see that x™ — 0 as n — 00; hence lims, = Tt

" = |x|" > 1, and so (x") is not a null sequence and hence Y. x" diverges

For |x| > 1 also |x
]

by Theorem 6.1.5.

Example 6.2.3.

. % < 1 and hence
1oyl L,
2 4 8 '.._1_1_ .
2
. % < 1 and hence
1+1+1+ 1 4 1 3
3 9 27 ..._1_%_ .
. —% < 1 and hence
1 +1 " 1 2
Il._1+%_3.

Example 6.2.4. A periodic decimal expansion is, up to an additive constant, a geometric series;
it always defines a rational number. For example,

234:=2.343434... =2+ 0y 0y St oy My Ly Ly
R e 102 10* 106 N 100 100 1002

34 1 34 100 34 232

=24+ —" =24+ — — =24 —=—
100 1 -1 100 99 99 99

6.3 Series of real numbers

In this section we will give some criteria to test for convergence of series.

Theorem 6.3.1. A series 220:1 a, with a, > 0 converges if and only if its partial sums are bounded.

Proof. The assumption a,, > 0 means that the sequence of partial sums (s,) is increasing. There-
for s,,; = s, and so s,, < s and hence Zi’;l a, converges by Theorem 5.3.5. O




Example 6.3.2. Consider a decimal expansion 0.d;d,d5... = Zn 1 10n with d,, € {0,1,...,9}.

The partial sums
4 N d, R d,
"= 70" 100 10"

are increasing in n and are bounded by

a2y gy Swmend 1-(G) 9 1 0 10,
10 100 10" 10 1—5 10 1—5 10 9

(our estimate says that 0.99...9, with n digits, is indeed less than 1).
Thus, by Theorem 6.3.1 every decimal expansion converges.

This boundedness criterion can be used for a comparison test for convergence:

Theorem 6.3.3 (Majorisation of real series). Suppose (x,) ey is a real sequence for which there
exists a convergent series ZZ; a, of real numbers a, > 0 with

0<x,<a, foralneN.
o0 o0 o0
Then anl X, also converges and anl x, < anl a,.
We say that a,, majorises [majorisiert] x,,.

Proof. Denote C := 212; a;. We consider partial sums. By assumption, ZZ:1 a; < C and so

n n
0<Y x <Y a<C.
k=1 k=1

Thus, Z,i“;l X, converges by Theorem 6.3.1. O

Exercise 6.3.4. SupposeOo that for a real series Zzo:l a, Ct)glelre exists a sequence (x,),ey With
a, > x, > 0 such that ), _, x, is divergent. Prove that ), _, a, diverges as well.

6.4 Trigonometric and other functions

Many important functions can be defined as series:

e The exponential function [Exponentialfunktion]:

2 x3 o0 n

X
ex x—1+x+—+—+ —
p(x) 21 "3l £
e The sine function [Sinusfunktion]:
3 n,.2n+1
x (—1)"x
sin(x)=x — — —I— — .
(x) = 3! Z (2n+1)!
e The cosine function [Cosinusfunktion]
2 4 00 n,.2n
x“ X (-1)"x
cos(x)=1——+ —
(x) 21 4l Z (2n)!
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