
Lecture 6 — Series
6.1 Partial sums and convergence

Definition 6.1.1.

(i) Let (an)n∈� be a sequence. Then a series [Reihe] is the sequence (sn)n∈� of partial sums
[Partialsummen]

sn := a1+ . . .+ an.

Usually we write
�∞

n=1 an for the sequence (sn)n∈� and call an its terms [Summanden].

(ii) In case the series (sn)n∈� converges to s ∈ � we write

∞�

n=1

an := lim
n→∞

n�

k=1

ak = lim
n→∞

sn = s.

Remark 6.1.2. In the convergent case, the notation

�∞
n=1 an has two different meanings:

• The sequence of partial sums (a1+ . . .+ an)n∈�, and

• a number s ∈ �, namely the limit of the partial sums; it is also called the value [Wert] of
the series.

Example 6.1.3.

(i) Decimal expansion [Dezimaldarstellung]: The decimal expansion of a number x ∈ � can be
defined as a series. The partial sums are sn = d0 +

d1
10
+ . . .+ dn

10n , that is, finite expansions
up to the n-th digit. The limit is x = lim sn. For instance π= 3.14 . . .= 3+ 1

10
+ 4

100
+ . . ..

(ii) We claim
�∞

n=1
1

n(n+1) = 1, i.e., we claim for the sequence sn of partial sums that

sn :=
1

1 · 2 +
1

2 · 3 + . . .+
1

n(n+ 1)
→ 1 as n→∞.

Proof: Writing

1
n(n+ 1)

=
−(n2− 1) + n2

n(n+ 1)
= −n− 1

n
+

n
n+ 1

, for n ∈ �,

we see we can apply a telescope sum trick:

sn =
�
− 0+

1
2

�
+
�
− 1

2
+

2
3

�
+
�
− 2

3
+

3
4

�
+ . . .+
�
− n− 1

n
+

n
n+ 1

�

= −0+
n

n+ 1
=

1

1+ 1
n

→ 1 as n→∞.
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Example 6.1.4. If we are careless, we can easily run into contradictions:

0= (1− 1) + (1− 1) + . . .= 1+ (−1+ 1) + (−1+ 1) + . . .= 1.

In naive language, infinite sums are not associative.

The following theorem give some necessary condition on a sequence in order for the corre-
sponding series to converge:

Theorem 6.1.5. If
�∞

n=1 an converges then lim
n→∞

an = 0. (We also write an→ 0 as n→∞.)

Proof. We have an = sn− sn−1 for n≥ 2 and thus, using sn =
�n

k=1 ak→ s,

lim
n→∞

an = lim
n→∞
(sn− sn−1) = lim

n→∞
sn− lim

n→∞
sn−1 = s− s = 0.

6.2 Important examples

In Theorem 6.1.5 we have seen that the summands of a convergent series form a null sequence.
The converse, however, does not hold as the following example shows:

Example 6.2.1. The harmonic series [harmonische Reihe]
∞�

k=1

1
k
= 1+

1
2
+

1
3
+

1
4
+ . . .

has terms an =
1
n

forming a null sequence.
Nevertheless, the sequence of partial sums is unbounded. Indeed, for n ≥ 1 consider the

subsequence [Teilfolge]

s2n = 1+
1
2
+

1
3
+ . . .+

1
2n

= 1+
1
2
+
� 1

3
+

1
4� �� �

≥1/2

�
+
� 1

5
+ . . .+

1
8� �� �

≥1/2

�
+ . . .+
� 1

2n−1+ 1
+ . . .+

1
2n� �� �

≥1/2

�

≥ 1+
n
2
→∞.

Thus, the harmonic series does not converge.
Moreover (sn)n∈� is increasing, and hence our argument shows that

� 1
n

diverges to infinity;
as for sequences we denote this symbolically by

� 1
n
=∞.

A very important series will turn out to be the following:

Theorem 6.2.2. Let x ∈ �. The geometric series [geometrische Reihe]
∞�

k=0

xk = 1+ x + x2+ x3+ . . .

converges for all |x |< 1 to
∞�

n=0

xn =
1

1− x
,

while for |x | ≥ 1 the series diverges.
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Proof. The geometric sum gives

sn =
n�

j=0

x j = 1+ x + x2+ . . .+ xn =
1− xn+1

1− x
for x �= 1. (6.1)

When |x |< 1 we see that xn→ 0 as n→∞; hence lim sn =
1

1−x
.

For |x | ≥ 1 also |xn| = |x |n ≥ 1, and so (xn) is not a null sequence and hence

�
xn

diverges

by Theorem 6.1.5.

Example 6.2.3.

•

���12
���< 1 and hence

1+
1
2
+

1
4
+

1
8
+ . . .=

1

1− 1
2

= 2.

•

���13
���< 1 and hence

1+
1
3
+

1
9
+

1
27
+ . . .=

1

1− 1
3

=
3
2

.

•

���−1
2

���< 1 and hence

1− 1
2
+

1
4
− 1

8
± . . .=

1

1+ 1
2

=
2
3

.

Example 6.2.4. A periodic decimal expansion is, up to an additive constant, a geometric series;

it always defines a rational number. For example,

2.34 :=2.343434 . . .= 2+
34
102 +

34
104 +

34
106 + · · ·= 2+

34
100

�
1+

1
100

+
1

1002 + . . .
�

=2+
34

100
· 1

1− 1
100

= 2+
34

100
· 100

99
= 2+

34
99
=

232
99

.

6.3 Series of real numbers

In this section we will give some criteria to test for convergence of series.

Theorem 6.3.1. A series
�∞

n=1 an with an ≥ 0 converges if and only if its partial sums are bounded.

Proof. The assumption an ≥ 0 means that the sequence of partial sums (sn) is increasing. There-

for sn+1 ≥ sn and so sn ≤ s and hence

�∞
n=1 an converges by Theorem 5.3.5.
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Example 6.3.2. Consider a decimal expansion 0.d1d2d3 . . . =
�∞

n=1
dn

10n with dn ∈ {0, 1, . . . , 9}.
The partial sums

sn =
d1

10
+

d2

100
+ . . .+

dn

10n

are increasing in n and are bounded by

sn ≤
9

10
+

9
100

+ . . .+
9

10n
geom.series

=
9
10
·

1−
�

1
10

�n

1− 1
10

<
9

10
· 1

1− 1
10

=
9

10
· 10

9
= 1

(our estimate says that 0.99 . . . 9, with n digits, is indeed less than 1).

Thus, by Theorem 6.3.1 every decimal expansion converges.

This boundedness criterion can be used for a comparison test for convergence:

Theorem 6.3.3 (Majorisation of real series). Suppose (xn)n∈� is a real sequence for which there
exists a convergent series

�∞
n=1 an of real numbers an ≥ 0 with

0≤ xn ≤ an for all n ∈ �.

Then
�∞

n=1 xn also converges and
�∞

n=1 xn ≤
�∞

n=1 an.

We say that an majorises [majorisiert] xn.

Proof. Denote C :=
�∞

k=1 ak. We consider partial sums. By assumption,

�n
k=1 ak ≤ C and so

0≤
n�

k=1

xk ≤
n�

k=1

ak ≤ C .

Thus,

�∞
k=1 xk converges by Theorem 6.3.1.

Exercise 6.3.4. Suppose that for a real series

�∞
n=1 an there exists a sequence (xn)n∈� with

an ≥ xn ≥ 0 such that

�∞
n=1 xn is divergent. Prove that

�∞
n=1 an diverges as well.

6.4 Trigonometric and other functions

Many important functions can be defined as series:

• The exponential function [Exponentialfunktion]:

exp(x) = 1+ x +
x2

2!
+

x3

3!
+ . . .=

∞�

n=0

xn

n!

• The sine function [Sinusfunktion]:

sin(x) = x − x3

3!
+

x5

5!
± . . .=

∞�

n=0

(−1)nx2n+1

(2n+ 1)!

• The cosine function [Cosinusfunktion]

cos(x) = 1− x2

2!
+

x4

4!
± . . .=

∞�

n=0

(−1)nx2n

(2n)!
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