
Lecture 5 — Sequences
5.1 Examples and definition

The mathematical concept of a sequence [Folge] is easy to understand. First we look at a few
examples.

Example 5.1.1.

1,2, 3,4, 5,6, 7,8, 9,10, . . . the sequence of natural numbers

1,
1

2
,
1

4
,
1

8
,

1

16
, . . . , a sequence of rational numbers

−1, 1,−1,1,−1, 1,−1, . . . a sequence of 1s and −1s

π,
2

3
, 15, log 2,

p
15, . . . a sequence of random real number

The characteristic feature of a sequence of numbers is the fact that there is a first term of
the sequence, a second term, and so on. In other words, the numbers in a sequence come in a
particular order. This gives rise to the following formal definition:

Definition 5.1.2. A sequence of real numbers is a map from the natural numbers N into the
set R of real numbers. This means that for each natural number n there is an element of the
sequence, which we denote by an. In this notation, the elements of the sequence can be listed
as

a1, a2, a3, . . .

More concisely, we write (an)n∈N for the sequence.

Example 5.1.3.

(i) Let c be a fixed constant real number. Then the sequence an = c for n ∈ N is called constant
sequence [konstante Folge].

c, c, c, c, c, c, c, . . .

(ii) an =
1
n

for n ∈ N. The term a17 is 1
17

. A sequence like this is defined explicitly. It is given
by a formula which can be used directly to compute an arbitrary term of the sequence.

(iii) Here is another example of an explicitly given sequence:
�

n
n+1

�

n∈N
.

(iv) Define a1 = 1 and an+1 = an+(2n+1). This is a recursively [rekursiv]defined sequence. To
compute an+1 we need to know an, for which we need to know an−1 and so on. Sometimes
it is not difficult to find an explicit description for a recursively defined sequence. In this
case we have an = n2.
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(v) A famous (and more difficult) example for a recursively defined sequence is the Fibonacci
sequence: f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n > 2, n ∈ N. The first few terms of the
sequence are

1,1, 2,3, 5,8, 13,21, 34, . . .

There is the following closed form:

fn =
1
p

5

��

1+
p

5

2

�n

−
�

1−
p

5

2

�n�

.

5.2 Limits and convergence

We will now have a closer look at the terms of the sequences (ii) and (iii) from Example 5.1.3
above:

1,
1

2
= 0.5,

1

3
= 0.3333 . . . ,

1

4
= 0.25,

1

5
= 0.2, . . . ,

1

200
= 0.005, . . .

1

2
= 0.5,

2

3
= 0.6666 . . . ,

3

4
= 0.75,

4

5
= 0.8, . . . ,

199

200
= 0.995, . . .

While the terms of the first sequence get closer and closer to 0, the terms of the second sequence
get closer and closer to 1. Although no term of either sequence ever reaches 0 or 1, respectively,
we would like to be able to express the fact that both sequences approach a certain number and
get arbitrarily close.

Definition 5.2.1. A sequence (an)n ∈ N has a limit [Grenzwert] a ∈ R if for every ε > 0 there is
an N ∈ N such that

�

�an− a
�

�< ε for n≥ N .

If the sequence (an)n∈N has a limit a, then (an)n∈N is called convergent [konvergent] and we
write

lim
n→∞

an = a.

Read: The limit of an as n goes to∞ is a.
If a sequence is not convergent it is called divergent [divergent].

It is worthwhile to think about this definition for a while and understand what the different
parts of the definition mean. One way to interpret it is to say that a is a limit of a sequence
(an)n∈N if the distance of a to all except a finite number of terms of the sequence is smaller than
ε. The finite number of terms which may be further away from a than ε are

a1, a2, a3, . . . , aN−1.

Note that N depends on ε, although we do not explicitly state this in the definition. This is
because we have to choose N appropriately, depending on the given ε.
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Example 5.2.2. Let us consider the sequence an =
1
n

for n ∈ N. We would like to show that the
sequence has limit 0. We will follow the definition of a limit and need to show that for each
ε > 0 there is an N such that

�

�

�

�

1

n

�

�

�

�

< ε for all n≥ N .

We take ε as given. The condition 1
n
< ε is equivalent to the condition n > 1

ε
. So let us try to

choose N to be the next natural number larger than 1
ε
. Then we have that 1

N
< ε. With this we

get the following chain of inequalities for n≥ N :

1

n
≤

1

N
< ε.

In particular, we see that an =
1
n
< ε for all n ≥ N . Hence we have shown that 0 is the limit of

the sequence (1
n
)n∈N.

Example 5.2.3. The sequence 1,−1, 1,−1, . . . is divergent. It is interesting to prove this using
the definition of limit. It requires working (implicitly or explicitly) with the negation of the
defining property including the various quantifiers.

Theorem 5.2.4 (Algebra with sequences). Let (an)n∈N and (bn)n∈N be convergent sequences.
Then:

(i) (an± bn)n∈N is convergent and

lim
n→∞
(an± bn) = lim

n→∞
an± lim

n→∞
bn.

(ii) (an · bn)n∈N is convergent and

lim
n→∞
(an · bn) = lim

n→∞
an · lim

n→∞
bn.

(iii) If bn 6= 0 and limn→∞ bn 6= 0 then
�

an
bn

�

n∈N
is convergent and

lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
.

Exercise 5.2.5. What happens if one of the sequences (for example sequence (an)n∈N) is diver-
gent? What can we say about

(an+ bn)n∈N,
(an · bn)n∈N and
�

an

bn

�

n∈N
?

3



5.3 One test for convergence

Definition 5.3.1. We will say that a sequence is increasing [steigend] if an ≥ am whenever
n> m. It is decreasing [fallend] if an ≤ am whenever n> m. A sequence is monotone [monoton]
if it is either increasing or decreasing.

Example 5.3.2.

• The sequence
�

1
n

�

n∈N
is decreasing since 1

n
< 1

m
if n> m.

• The sequence
�

n−1
n

�

n∈N
is increasing.

• The sequence ((−1)n)n∈N is neither increasing nor decreasing.

Definition 5.3.3. We say that a sequence (an)n∈N is bounded [beschränkt] if there are some
bu, bl ∈ R such that bl ≤ an ≤ bu for all n. In this case we call bu and bl the upper [obere
Schranke] and lower bound [untere Schranke], respectively.

Otherwise we say that (an)n∈N is unbounded [unbeschränkt].

Example 5.3.4.

• The sequence
�

1
n

�

n∈N
is bounded since 0≤ 1

n
≤ 1 for each n ∈ N.

• The sequence (2n)n∈N is unbounded since for each b ∈ N there is some n ∈ N such that
2n > b. I.e., there is no upper bound.

Theorem 5.3.5. Let (an)n∈N be a monotone sequence. If an is bounded then an converges.
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