Lecture 4 - Functions

Definition 4.0.1. Let X and Y be sets. A function [Funktion] f from the set X to the set Y, denoted $f: X \rightarrow Y$, is a rule that assigns to each element of X exactly one element of Y.

The element of Y assigned to a particular element $x \in X$ is denoted by $f(x)$ and is called the image of x under f [Bild von x unter f]. Vice versa, x is called a preimage [Urbild] of $y=f(x)$. Note that an element $y \in Y$ can have more than one preimage under f or may not a have a preimage at all.

The set X is called the domain [Definitionsbereich] of f and Y is called the range [Wertebereich] of f. The set $\{f(x) \mid x \in X\}$ of all images is called the image [Bild] of f.

It is important to understand that the domain and the range are an essential part of the definition of a function. For example, consider the functions

$$
\begin{array}{lll}
f: & \mathbb{R} \rightarrow \mathbb{R} & x \mapsto x^{2} \\
g: & \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} & x \mapsto x^{2}
\end{array}
$$

Strictly speaking, these are two different functions. One obvious difference is that all elements in the range of g do have a preimage, while there are elements in the range of f which do not have a preimage (-1 for example). So the statement "All elements in the range have a preimage." is true for g and false for f.

Example 4.0.2.

(i) Let $c \in Y$ be constant. Then the function

$$
\begin{aligned}
f: X & \rightarrow Y \\
x & \mapsto
\end{aligned}
$$

is called a constant function [konstante Funktion]. It maps each element of X to the same value c.
(ii) The function

$$
\begin{aligned}
\mathrm{id}_{X}: X & \rightarrow X \\
x & \mapsto
\end{aligned}
$$

is called the identity function [Identität] of X. It maps each element of X to itself.

4.1 Properties of functions

Definition 4.1.1. Let $f: X \rightarrow Y$ be a function.

- The function f is called injective [injektiv] iff for all $x_{1}, x_{2} \in X$

$$
x_{1}=x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

- The function f is called surjective [surjektiv] iff for all $y \in Y$ there exists $x \in X$ such that $f(x)=y$.
- If f is injective and surjective then it is bijective [bijektiv], i.e., f is bijective iff for each $y \in Y$ there is a unique $x \in X$ such that $f(x)=y$.

Example 4.1.2.

(i) The function id_{X} is bijective.
(ii) The constant function $f: x \mapsto c$ for a fixed c is injective if and only if X has exactly one element. It is surjective if and only if Y has exactly one element.
(iii) The function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x(x-1)(x+1)
\end{aligned}
$$

is not injective because $f(-1)=f(0)=f(1)=0$. The function is surjective because the equation $f(x)=c$ is equivalent to the equation $x^{3}-x-c=0$, which is a polynomial of degree three, which has a zero in \mathbb{R}.

4.2 Algebra with functions

Definition 4.2.1. We consider functions $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$. Then we can construct new functions
(i) $f \pm g: x \mapsto f(x) \pm g(x) \quad$ for $x \in X \cap Y$,
(ii) $f \cdot g: x \mapsto f(x) \cdot g(x) \quad$ for $x \in X \cap Y$,
(iii) $\frac{f}{g}: x \mapsto \frac{f(x)}{g(x)} \quad$ for $x \in X \cap Y$ and $g(x) \neq 0$,
(iv) $g \circ f: x \mapsto g(f(x)) \quad$ if $f(X)$ is contained in Y.

This is called the composition [Hintereinanderausführung/Verkettung] of functions. The function f is the inner function [innere Funktion] and the function g is the outer function [äußere Funktion].

Example 4.2.2. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=\sqrt{x^{2}+1}$ and decompose it as follows: Let $\mathbf{1}_{\mathbb{R}}: x \mapsto 1$ and $\sqrt{ }: x \mapsto \sqrt{x}$. Then

$$
f=\sqrt{ } \cdot \circ\left(\mathrm{id}_{\mathbb{R}} \cdot \mathrm{id}_{\mathbb{R}}+\mathbf{1}_{\mathbb{R}}\right)
$$

Theorem 4.2.3. Let $f: X \rightarrow Y$ be a bijective function. Then there is a unique function $g: Y \rightarrow X$ such that $f \circ g=\mathrm{id}_{Y}$ and $g \circ f=\mathrm{id}_{X}$.

The function g is called the inverse function [Umkehrfunktion] of f. We write $g=f^{-1}$. If $f(x)=y$, then $f^{-1}(y)=x$.

4.3 Types of functions on \mathbb{R}

The following is a list of certain frequently appearing types of functions on \mathbb{R}.
constant functions Let $c \in \mathbb{R}$. Then a function $f(x)=c$ is a constant function.
power functions The function $f(x)=x^{n}$ for a natural number n is called a power function [Potenzfunktion].
polynomials A function of the form $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}$ is called a polynomial function [Polynom]. Polynomial functions are built from the identity function $\mathrm{id}_{\mathbb{R}}$ and the constant functions using,,$+- \cdot$
rational functions A function of the form $f(x)=p(x) / q(x)$ with polynomials p and q is called a rational function [rationale Funktion]. Note that its maximal domain is $\mathbb{R} \backslash\{x \in \mathbb{R} \mid q(x)=$ $0\}$.
algebraic functions Algebraic functions [algebraische Funtionen] are constructed from polynomials (or, equivalently from the identity function and the constant functions) by using + , $-, \cdot, /$ and taking roots.

