Lecture 4 — Functions

Definition 4.0.1. Let *X* and *Y* be sets. A function [Funktion] *f* from the set *X* to the set *Y*, denoted $f : X \rightarrow Y$, is a rule that assigns to each element of *X* exactly one element of *Y*.

The element of *Y* assigned to a particular element $x \in X$ is denoted by f(x) and is called the image of *x* under *f* [Bild von *x* unter *f*]. Vice versa, *x* is called a preimage [Urbild] of y = f(x). Note that an element $y \in Y$ can have more than one preimage under *f* or may not a have a preimage at all.

The set X is called the domain [Definitionsbereich] of f and Y is called the range [Wertebereich] of f. The set $\{f(x) \mid x \in X\}$ of all images is called the image [Bild] of f.

It is important to understand that the domain and the range are an essential part of the definition of a function. For example, consider the functions

$$f: \mathbb{R} \to \mathbb{R} \qquad x \mapsto x^2$$
$$g: \mathbb{R} \to \mathbb{R}_{>0} \qquad x \mapsto x^2$$

Strictly speaking, these are two different functions. One obvious difference is that all elements in the range of g do have a preimage, while there are elements in the range of f which do not have a preimage (-1 for example). So the statement "All elements in the range have a preimage." is true for g and false for f.

Example 4.0.2.

(i) Let $c \in Y$ be constant. Then the function

$$\begin{array}{rcccc} f: X & \to & Y \\ & x & \mapsto & c \end{array}$$

is called a *constant function* [konstante Funktion]. It maps each element of *X* to the same value *c*.

(ii) The function

$$\begin{aligned} \operatorname{id}_X : & X & \to & X \\ & x & \mapsto & x \end{aligned}$$

is called the identity function [Identität] of X. It maps each element of X to itself.

4.1 Properties of functions

Definition 4.1.1. Let $f : X \to Y$ be a function.

• The function *f* is called *injective* [*injektiv*] *iff* for all $x_1, x_2 \in X$

$$x_1 = x_2 \iff f(x_1) = f(x_2)$$

- The function f is called surjective [surjektiv] iff for all $y \in Y$ there exists $x \in X$ such that f(x) = y.
- If f is injective and surjective then it is bijective [bijektiv], i.e., f is bijective iff for each y ∈ Y there is a unique x ∈ X such that f(x) = y.

Example 4.1.2.

- (i) The function id_X is bijective.
- (ii) The constant function $f : x \mapsto c$ for a fixed *c* is injective if and only if *X* has exactly one element. It is surjective if and only if *Y* has exactly one element.
- (iii) The function

 $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x(x-1)(x+1)$

is not injective because f(-1) = f(0) = f(1) = 0. The function is surjective because the equation f(x) = c is equivalent to the equation $x^3 - x - c = 0$, which is a polynomial of degree three, which has a zero in \mathbb{R} .

4.2 Algebra with functions

Definition 4.2.1. We consider functions $f : X \to \mathbb{R}$ and $g : Y \to \mathbb{R}$. Then we can construct new functions

- (i) $f \pm g : x \mapsto f(x) \pm g(x)$ for $x \in X \cap Y$,
- (ii) $f \cdot g : x \mapsto f(x) \cdot g(x)$ for $x \in X \cap Y$,
- (iii) $\frac{f}{g}: x \mapsto \frac{f(x)}{g(x)}$ for $x \in X \cap Y$ and $g(x) \neq 0$,
- (iv) $g \circ f : x \mapsto g(f(x))$ if f(X) is contained in *Y*.

This is called the *composition* [Hintereinanderausführung/Verkettung] of functions. The function *f* is the inner function [innere Funktion] and the function *g* is the outer function [äußere Funktion].

Example 4.2.2. Consider the function $f : \mathbb{R} \to \mathbb{R} : f(x) = \sqrt{x^2 + 1}$ and decompose it as follows: Let $\mathbf{1}_{\mathbb{R}} : x \mapsto 1$ and $\sqrt{\cdot} : x \mapsto \sqrt{x}$. Then

$$f = \sqrt{\cdot} \circ (\mathrm{id}_{\mathbb{R}} \cdot \mathrm{id}_{\mathbb{R}} + \mathbf{1}_{\mathbb{R}})$$

Theorem 4.2.3. Let $f : X \to Y$ be a bijective function. Then there is a unique function $g : Y \to X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$.

The function g is called the *inverse function* [Umkehrfunktion] of f. We write $g = f^{-1}$. If f(x) = y, then $f^{-1}(y) = x$.

4.3 Types of functions on \mathbb{R}

The following is a list of certain frequently appearing types of functions on \mathbb{R} .

constant functions Let $c \in \mathbb{R}$. Then a function f(x) = c is a constant function.

- power functions The function $f(x) = x^n$ for a natural number n is called a power function [Potenzfunktion].
- polynomials A function of the form $f(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ is called a polynomial function [Polynom]. Polynomial functions are built from the identity function $id_{\mathbb{R}}$ and the constant functions using $+, -, \cdot$.
- rational functions A function of the form f(x) = p(x)/q(x) with polynomials p and q is called a rational function [rationale Funktion]. Note that its maximal domain is $\mathbb{R} \setminus \{x \in \mathbb{R} \mid q(x) = 0\}$.
- algebraic functions Algebraic functions [algebraische Funtionen] are constructed from polynomials (or, equivalently from the identity function and the constant functions) by using +, $-, \cdot, /$ and taking roots.