
Lecture 3 — Proof Techniques
A proof is a convincing demonstration (within the accepted standards of the field) that some
mathematical statement is necessarily true. Proofs are obtained from deductive reasoning,
rather than from inductive or empirical arguments. That is, a proof must demonstrate that
a statement is true in all cases, without a single exception.

In this chapter we will take a look at the most common and expedient proof techniques and
give examples to illustrate them.

3.1 Direct proof

A direct proof [direkter Beweis] is straightforward. The conclusion is established by logically
combining the axioms, definitions, and earlier theorems. Thus, you start out with the assump-
tions A and try to directly conclude proposition B. I.e., we want to show A =⇒ B.

Example 3.1.1.

• The sum of two even integers is even.

• If a divides b and a divides c then a divides b+ c.

3.2 Proof by contradiction

A proof by contradiction [Beweis durch Widerspruch] (also known as reductio ad absurdum) uses
the fact that a proposition can only be either true or false.

It is shown that if some statement (namely, the negation of what we aim to prove) were true,
then a logical contradiction would have to occur.

Example 3.2.1.

•
p

3 is irrational.

• There is no smallest positive (i.e., > 0) rational number.

3.3 Proof by contraposition

A proof by contraposition [Beweis durch Kontraposition] uses

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

In other words, it establishes the conclusion “if A then B” by proving the equivalent contraposi-
tive statement “if not B then not A”.

Example 3.3.1. If n2 is even, then n is even.

1



3.4 Proof by induction

A proof by induction [Beweis durch vollständige Induktion] is a useful tool to prove a proposition
B(n) which is stated for all natural numbers n (or for all natural numbers greater than a given
number k ∈ N).

A proof by induction consists of two parts:

(i) Induction beginning [Induktionsanfang]: Prove B(1) (or B(k)).

(ii) Induction step [Induktionsschritt]: Assume that B(n) is true and show that B(n+ 1) is true
(making use of the fact that B(n) is true).

Imagine a domino chain. The induction step assures that a domino (here n + 1) falls if
domino n falls.

Look at this example:

Example 3.4.1. A typical example for a proof by induction is the following:

Proposition:
∑n

k=1 k = n(n+1)
2

.

Proof. We do a proof by induction.
Induction beginning: For n= 1, the claim is

1
∑

k=1

k = 1=
1 · 2

2
,

which is quite obviously true.
Induction step: Now we assume that the proposition is true for n. That means

n
∑

k=1

k =
n(n+ 1)

2

is true. With the help of this assumption we try to prove the proposition

n+1
∑

k=1

k =
(n+ 1)(n+ 2)

2
,

which is the proposition for n+ 1. We get

n+1
∑

k=1

k =
n
∑

k=1

k+ (n+ 1)

assumption
=

n(n+ 1)
2

+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)
2

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.
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To see that both steps (beginning and induction) are essentiall for the proof to be valid,
consider the following:

Example 3.4.2. Consider the proposition: 1+ n> 2+ n for all n ∈ N.
This is obviously wrong, but still it is easy to do the induction step:
Assume that the proposition is true for n. So

n+ 1> n+ 2

⇐⇒ n+ 1+ 1> n+ 2+ 1

⇐⇒ (n+ 1) + 1> (n+ 1) + 2.

But we cannot do the induction beginning because there is no smallest natural number satis-
fying n+ 1> n+ 2.

A fake induction proof

Some proofs look good at the first glance, but sometimes a subtle error is inside. Look at this
“proof”:

Theorem: All sheep have the same colour.

Proof. We proof inductively that any set of sheep consists of only sheep of a single colour, i.e., is
equicolored.
Induction start: A set containing one sheep is obviously equicolored.
Induction step: Assume that any set of n sheep is equicolored. Now consider a set of n+1 sheep.
The set formed by the first n sheep is equicolored. But so is the set formed by the last n sheep.
Hence the whole set must be equicolored.

What is wrong here?

3.5 Proof strategies

In mathematics, you often state the existence of a certain object. For example:

Theorem 3.5.1. Any two natural numbers a and b have a greatest common divisor [größter
gemeinsamer Teiler].

We will first consider two different proofs of Theorem 3.5.1.

Existence proof

Like the name promises, an existence proof [Existenzbeweis] proves the existence of something.
Let’s look at Theorem 3.5.1:

Proof. A divisor of a natural number has to be less or equal to the number. Since there are only
finitely many natural numbers which are less than or equal to a and b, respectively, only finitely
many divisors can exist.

Take 1: it is a natural number and divides both a and b. So 1 is a common divisor. Since there
are only finitely many other divisors, a greatest common divisor exists.
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At the end of the proof, we know that the theorem holds but we cannot say what the greatest
common divisor is.

Constructive proof

A constructive proof [konstruktiver Beweis] is a proof which also delivers a solution. Again we
look at Theorem 3.5.1:

Proof. For each prime number p denote by ea(p), eb(p) its exponent in the (unique!) prime
factor decompositions of a, respectively b. (Note that in either case only finitely many of the
ea(p), eb(p) are larger than zero.)

Then

d :=
∏

p prime

pmin(ea(p),eb(p))

is the greatest common divisor of a and b.

Uniqueness proof

Once we know about the existence of a solution, we might be interested in its uniqueness. Then
we have to maintain a uniqueness proof [Eindeutigkeitsbeweis].

Consider the following theorem, which is stronger than Theorem 3.5.1.

Theorem 3.5.2. Any two natural numbers a and b have a unique greatest common divisor.

Proof. Assume that there are two different greatest common divisors c and d of a and b. Since c
and d are common divisors and c is the greatest common divisor, this leads to c ≥ d. The same
is true for d leading to d ≥ c and so c = d.

3.6 The pigeon hole principle

The following – surprisingly simple – theorem can very often be applied in proofs:

Theorem 3.6.1 (The pigeon hole principle [Schubfachprinzip]). Assume we are given n+ 1 balls
and n boxes and are asked to distribute the balls among the boxes. Then there exists one box which
contains more than one ball.

There is nothing to prove.

Now let us apply the pigeon hole principle to prove the following:

Proposition 3.6.2. Let n ∈ N with 2 6 |n, 5 6 |n. Then there is a number N ∈ N whose decimal
representation is N = 111 . . . 111 such that n|N .

Proof. Denote by N1, N2, . . . , Nn+1 the first n+ 1 numbers of the form 111 . . . 111, i.e.,

Ni = 111 . . . 111
︸ ︷︷ ︸

i ones

.
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Moreover, denote by Ri the remainder of Ni on division by n. Then 0 ≤ Ri ≤ n− 1. Thus, there
are only n different possible values for Ri and by the pigeon hole principle (Theorem 3.6.1)
there are i 6= j such that Ri = R j. Without loss of generality assume that i > j. Then n|(Ni −N j)
and

Ni − N j = 111 . . . 111
︸ ︷︷ ︸

i− j many

000 . . . 000
︸ ︷︷ ︸

j many

= 111 . . . 111
︸ ︷︷ ︸

i− j many

· 10 j = Ni− j · 10 j.

Since n is relatively prime to 10 j, we must have n|Ni− j.
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