Lecture 10 — The Size of Infinite Sets

In this chapter we will consider different notions of infinity.

Definition 10.0.1. Let A be a set.

- The cardinality [Kardinalität] #A of A is the number of elements of A.
- A is finite [endlich] if there is $n \in \mathbb{N}$ such that #A = n. Otherwise A is infinite [unendlich].

Example 10.0.2.

- $\#\{1, 2, 3, 4, 5, \dots, n\} = n.$
- #{apple, orange, pear, grape} = 4.

Lemma 10.0.3. #A = #B iff there is a bijection $A \rightarrow B$.

Example 10.0.4. Let $A = \{2, 3, 5, 7\}$ and $B = \{apple, orange, pear, grape\}$. Then #A = #B and

$$f : A \rightarrow B :$$

$$2 \mapsto \text{apple}$$

$$3 \mapsto \text{orange}$$

$$5 \mapsto \text{pear}$$

$$7 \mapsto \text{grape}$$

is a bijection.

Recall that in Chapter 1 we introduced the natural numbers \mathbb{N} as numbers that count objects.

Definition 10.0.5. A set *A* is countable [abzählbar] if it has the same cardinality as (some subset of) \mathbb{N} if there is an injective function $A \to \mathbb{N}$. Otherwise *A* is called uncountable [überabzählbar].

Note that every finite set is countable. Moreover, every infinite countable set has the same cardinality as \mathbb{N} .

10.1 Countable sets

Theorem 10.1.1. Let A be a set. Then the following statements are equivalent:

- (i) A is countable, i.e., there exists an injective function $A \rightarrow \mathbb{N}$.
- (ii) Either A is empty or there exists a surjective function $\mathbb{N} \to A$.

(iii) Either A is finite or there exists a bijection $\mathbb{N} \to A$.

Theorem 10.1.2. *Every subset of a countable set is countable.*

Theorem 10.1.3. Let *E* denote the set $\{0, 2, 4, 6, ...\}$ of even numbers. Then $\#E = \#\mathbb{N}$, i.e., there are equally many natural numbers and even numbers.

Proof. We will prove this by giving a bijection $\mathbb{N} \to E$: The function $d : \mathbb{N} \to E : n \mapsto 2n$ is a bijection.

Theorem 10.1.4. \mathbb{Z} *is countable, i.e.,* $\#\mathbb{Z} = \#\mathbb{N}$.

Proof. The function

$$f: \mathbb{N} \to \mathbb{Z}: n \mapsto \begin{cases} 0 & \text{if } n = 0, \\ \frac{n+1}{2} & \text{if } n \text{ is odd,} \\ -\frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

is a bijection.

Exercise 10.1.5. The union of two countable sets is countable.

Exercise 10.1.6. The product of two countable sets is countable.

Cantor's first diagonal process

Theorem 10.1.7. \mathbb{Q} *is countable, i.e.,* $\#\mathbb{Q} = \#\mathbb{N}$.

Proof. We will prove this by exhibiting a surjective function $f : \mathbb{N} \to \mathbb{Q}$. We will first give a surjective function $f_+ : \mathbb{N} \to \mathbb{Q}_{\geq 0}$. Recall that we can represent every non-negative rational number q by two natural numbers a and $b, b \neq 0$ as $q = \frac{a}{b}$.

Write *n* as $n = \frac{k(k+1)}{2} + \ell$ such that $k, \ell \in \mathbb{N}$ and $0 \le \ell \le k+1$. Now set $a := k - \ell, b = \ell + 1$. Consider the function

$$f_+:\mathbb{N}\to\mathbb{Q}_{\geq 0}:n\mapsto\frac{a}{b}.$$

See Figure 10.1 for an illustration of this function. It is easy to see that f_+ is surjective.

Now define the function

$$f: \mathbb{N} \to \mathbb{Q}: n \mapsto \begin{cases} 0 & \text{if } n = 0, \\ f_+\left(\frac{n+1}{2}\right) & \text{if } n \text{ is odd,} \\ -f_+\left(\frac{n}{2}\right) & \text{if } n \text{ is even.} \end{cases}$$

This is a surjective function $\mathbb{N} \to \mathbb{Q}$.

2

Figure 10.1: The non-negative rational numbers as pairs of natural numbers $a, b, b \neq 0$ on the left; the function $f_+ : \mathbb{N} \to \mathbb{Q}_{\geq 0}$ on the right. We see that f_+ is surjective.

10.2 Uncountable sets

Cantor's second diagonal process

Theorem 10.2.1. \mathbb{R} is uncountable.

Proof. We will show that the interval [0,1] in \mathbb{R} is uncountable. We will prove this by contradiction. Recall that every real number can be represented as an infinite sequence of digits.

So suppose that

s_{11}	s_{12}	s_{13}	•••	s_{1n}	•••
s_{21}	s_{22}	s_{23}	•••	s_{2n}	•••
s_{31}	s_{32}	s_{33}	•••	s_{3n}	•••
÷	:	:	۰.	÷	۰.
s_{m1}	s_{m2}	s_{m3}	•••	s_{mn}	•••
:	:	:	۰.	÷	۰.

is a list containing all real numbers in [0, 1]. Now consider the number $s = t_{11} t_{22} t_{33} \dots t_{nn} \dots$, where $t_{ii} \neq s_{ii}$. Then *s* is not contained in the list.

This means that while there are equally many rational numbers as there are integers and natural numbers (although $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$), the set \mathbb{R} of real numbers is strictly larger than \mathbb{N} .