Lecture 10 — The Size of Infinite Sets

In this chapter we will consider different notions of infinity.

Definition 10.0.1. Let A be a set.
* The cardinality [Kardinalitit] #A of A is the number of elements of A.

» A is finite [endlich] if there is n € N such that #A = n. Otherwise A is infinite [unendlich].
Example 10.0.2.
e #{1,2,3,4,5,...,n}=n.
» #{apple, orange, pear, grape} = 4.
Lemma 10.0.3. #A = #B iff there is a bijection A — B.
Example 10.0.4. Let A= {2,3,5,7} and B = {apple, orange, pear, grape}. Then #A = #B and
f:A—B:
2 — apple
3 — orange
5 — pear
7 — grape
is a bijection.
Recall that in Chapter 1 we introduced the natural numbers N as numbers that count objects.

Definition 10.0.5. A set A is countable [abzdhlbar] if it has the same cardinality as (some subset
of) N if there is an injective function A — N. Otherwise A is called uncountable [liberabzéahlbar].

Note that every finite set is countable. Moreover, every infinite countable set has the same
cardinality as N.

10.1 Countable sets

Theorem 10.1.1. Let A be a set. Then the following statements are equivalent:

(i) Ais countable, i.e., there exists an injective function A — N.
(ii) Either Ais empty or there exists a surjective function N — A.

(iii) Either A is finite or there exists a bijection N — A.

Theorem 10.1.2. Every subset of a countable set is countable.




Theorem 10.1.3. Let E denote the set {0,2,4,6,...} of even numbers. Then #E = #N, i.e., there
are equally many natural numbers and even numbers.

Proof. We will prove this by giving a bijection N — E: The functiond : N - E : n— 2nis a
bijection. H

Theorem 10.1.4. Z is countable, i.e., #7 = #N.

Proof. The function

0 ifn=0,
f:N>Z:n— % if n is odd,
—g if n is even
is a bijection. O

Exercise 10.1.5. The union of two countable sets is countable.

Exercise 10.1.6. The product of two countable sets is countable.

Cantor’s first diagonal process

Theorem 10.1.7. Q is countable, i.e., #Q = #N.

Proof. We will prove this by exhibiting a surjective function f : N — Q. We will first give a
surjective function f, : N — Q5,. Recall that we can represent every non-negative rational
number g by two natural numbers a and b,b #0 as q = %

Writenasnz@—l—ﬁ suchthat k,/ eNand0<{<k+1. Nowseta:=k—{,b={(+1.
Consider the function

a

friN=Qsine 7.

See Figure 10.1 for an illustration of this function. It is easy to see that f, is surjective.

Now define the function

0 ifn=0,
f:N->Q:n— f+(”7+1) if n is odd,

—fi (%) if n is even.

This is a surjective function N — Q. O
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Figure 10.1: The non-negative rational numbers as pairs of natural numbers a, b, b # 0 on the
left; the function f, : N — Qs on the right. We see that f, is surjective.

10.2 Uncountable sets

Cantor’s second diagonal process

Theorem 10.2.1. R is uncountable.

Proof. We will show that the interval [0, 1] in R is uncountable. We will prove this by contra-
diction. Recall that every real number can be represented as an infinite sequence of digits.

So suppose that

is a list containing all real numbers in [0, 1]. Now consider the number s = t1; toy tss ... tpy, --
where t;; #s;;. Then s is not contained in the list.
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This means that while there are equally many rational numbers as there are integers and
natural numbers (although N C Z C Q), the set R of real numbers is strictly larger than N.
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