Lecture 10 - The Size of Infinite Sets

In this chapter we will consider different notions of infinity.
Definition 10.0.1. Let A be a set.

- The cardinality [Kardinalität] \#A of A is the number of elements of A.
- A is finite [endlich] if there is $n \in \mathbb{N}$ such that $\# A=n$. Otherwise A is infinite [unendlich].

Example 10.0.2.

- $\#\{1,2,3,4,5, \ldots, n\}=n$.
- $\#\{$ apple, orange, pear, grape $\}=4$.

Lemma 10.0.3. $\# A=\# B$ iff there is a bijection $A \rightarrow B$.
Example 10.0.4. Let $A=\{2,3,5,7\}$ and $B=\{$ apple, orange, pear, grape $\}$. Then $\# A=\# B$ and

$$
\begin{aligned}
f: A & \rightarrow B: \\
2 & \mapsto \text { apple } \\
3 & \mapsto \text { orange } \\
5 & \mapsto \text { pear } \\
7 & \mapsto \text { grape }
\end{aligned}
$$

is a bijection.
Recall that in Chapter 1 we introduced the natural numbers \mathbb{N} as numbers that count objects.
Definition 10.0.5. A set A is countable [abzählbar] if it has the same cardinality as (some subset of) \mathbb{N} if there is an injective function $A \rightarrow \mathbb{N}$. Otherwise A is called uncountable [überabzählbar].

Note that every finite set is countable. Moreover, every infinite countable set has the same cardinality as \mathbb{N}.

10.1 Countable sets

Theorem 10.1.1. Let A be a set. Then the following statements are equivalent:
(i) A is countable, i.e., there exists an injective function $A \rightarrow \mathbb{N}$.
(ii) Either A is empty or there exists a surjective function $\mathbb{N} \rightarrow A$.
(iii) Either A is finite or there exists a bijection $\mathbb{N} \rightarrow A$.

Theorem 10.1.2. Every subset of a countable set is countable.

Theorem 10.1.3. Let E denote the set $\{0,2,4,6, \ldots\}$ of even numbers. Then $\# E=\# \mathbb{N}$, i.e., there are equally many natural numbers and even numbers.

Proof. We will prove this by giving a bijection $\mathbb{N} \rightarrow E$: The function $d: \mathbb{N} \rightarrow E: n \mapsto 2 n$ is a bijection.

Theorem 10.1.4. \mathbb{Z} is countable, i.e., $\# \mathbb{Z}=\# \mathbb{N}$.
Proof. The function

$$
f: \mathbb{N} \rightarrow \mathbb{Z}: n \mapsto \begin{cases}0 & \text { if } n=0 \\ \frac{n+1}{2} & \text { if } n \text { is odd } \\ -\frac{n}{2} & \text { if } n \text { is even }\end{cases}
$$

is a bijection.

Exercise 10.1.5. The union of two countable sets is countable.
Exercise 10.1.6. The product of two countable sets is countable.

Cantor's first diagonal process

Theorem 10.1.7. \mathbb{Q} is countable, i.e., $\# \mathbb{Q}=\# \mathbb{N}$.
Proof. We will prove this by exhibiting a surjective function $f: \mathbb{N} \rightarrow \mathbb{Q}$. We will first give a surjective function $f_{+}: \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}$. Recall that we can represent every non-negative rational number q by two natural numbers a and $b, b \neq 0$ as $q=\frac{a}{b}$.

Write n as $n=\frac{k(k+1)}{2}+\ell$ such that $k, \ell \in \mathbb{N}$ and $0 \leq \ell \leq k+1$. Now set $a:=k-\ell, b=\ell+1$. Consider the function

$$
f_{+}: \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}: n \mapsto \frac{a}{b} .
$$

See Figure 10.1 for an illustration of this function. It is easy to see that f_{+}is surjective.
Now define the function

$$
f: \mathbb{N} \rightarrow \mathbb{Q}: n \mapsto \begin{cases}0 & \text { if } n=0 \\ f_{+}\left(\frac{n+1}{2}\right) & \text { if } n \text { is odd } \\ -f_{+}\left(\frac{n}{2}\right) & \text { if } n \text { is even }\end{cases}
$$

This is a surjective function $\mathbb{N} \rightarrow \mathbb{Q}$.

Figure 10.1: The non-negative rational numbers as pairs of natural numbers $a, b, b \neq 0$ on the left; the function $f_{+}: \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}$ on the right. We see that f_{+}is surjective.

10.2 Uncountable sets

Cantor's second diagonal process

Theorem 10.2.1. \mathbb{R} is uncountable.
Proof. We will show that the interval $[0,1]$ in \mathbb{R} is uncountable. We will prove this by contradiction. Recall that every real number can be represented as an infinite sequence of digits.

So suppose that

$$
\begin{array}{cccccc}
s_{11} & s_{12} & s_{13} & \ldots & s_{1 n} & \ldots \\
s_{21} & s_{22} & s_{23} & \ldots & s_{2 n} & \ldots \\
s_{31} & s_{32} & s_{33} & \ldots & s_{3 n} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
s_{m 1} & s_{m 2} & s_{m 3} & \ldots & s_{m n} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots
\end{array}
$$

is a list containing all real numbers in [0,1]. Now consider the number $s=t_{11} t_{22} t_{33} \ldots t_{n n} \ldots$, where $t_{i i} \neq s_{i i}$. Then s is not contained in the list.

This means that while there are equally many rational numbers as there are integers and natural numbers (although $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$), the set \mathbb{R} of real numbers is strictly larger than \mathbb{N}.

