
Lecture 10 — The Size of Infinite Sets
In this chapter we will consider different notions of infinity.

Definition 10.0.1. Let A be a set.

• The cardinality [Kardinalität] #A of A is the number of elements of A.

• A is finite [endlich] if there is n ∈ N such that #A= n. Otherwise A is infinite [unendlich].

Example 10.0.2.

• #{1, 2,3, 4,5, . . . , n}= n.

• #{apple, orange, pear, grape}= 4.

Lemma 10.0.3. #A= #B iff there is a bijection A→ B.

Example 10.0.4. Let A= {2,3, 5,7} and B = {apple, orange, pear, grape}. Then #A= #B and

f : A→ B :

2 7→ apple

3 7→ orange

5 7→ pear

7 7→ grape

is a bijection.

Recall that in Chapter 1 we introduced the natural numbers N as numbers that count objects.

Definition 10.0.5. A set A is countable [abzählbar] if it has the same cardinality as (some subset
of) N if there is an injective function A→ N. Otherwise A is called uncountable [überabzählbar].

Note that every finite set is countable. Moreover, every infinite countable set has the same
cardinality as N.

10.1 Countable sets

Theorem 10.1.1. Let A be a set. Then the following statements are equivalent:

(i) A is countable, i.e., there exists an injective function A→ N.

(ii) Either A is empty or there exists a surjective function N→ A.

(iii) Either A is finite or there exists a bijection N→ A.

Theorem 10.1.2. Every subset of a countable set is countable.

1



Theorem 10.1.3. Let E denote the set {0, 2,4, 6, . . .} of even numbers. Then #E = #N, i.e., there
are equally many natural numbers and even numbers.

Proof. We will prove this by giving a bijection N → E: The function d : N → E : n 7→ 2n is a
bijection.

Theorem 10.1.4. Z is countable, i.e., #Z= #N.

Proof. The function

f : N→ Z : n 7→







0 if n= 0,
n+1

2
if n is odd,

− n
2

if n is even

is a bijection.

Exercise 10.1.5. The union of two countable sets is countable.

Exercise 10.1.6. The product of two countable sets is countable.

Cantor’s first diagonal process

Theorem 10.1.7. Q is countable, i.e., #Q= #N.

Proof. We will prove this by exhibiting a surjective function f : N → Q. We will first give a
surjective function f+ : N → Q≥0. Recall that we can represent every non-negative rational
number q by two natural numbers a and b, b 6= 0 as q = a

b
.

Write n as n = k(k+1)
2
+ ` such that k,` ∈ N and 0 ≤ ` ≤ k+ 1. Now set a := k− `, b = `+ 1.

Consider the function

f+ : N→Q≥0 : n 7→
a

b
.

See Figure 10.1 for an illustration of this function. It is easy to see that f+ is surjective.

Now define the function

f : N→Q : n 7→







0 if n= 0,

f+
�

n+1
2

�

if n is odd,

− f+
�

n
2

�

if n is even.

This is a surjective function N→Q.
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Figure 10.1: The non-negative rational numbers as pairs of natural numbers a, b, b 6= 0 on the
left; the function f+ : N→ Q≥0 on the right. We see that f+ is surjective.

10.2 Uncountable sets

Cantor’s second diagonal process

Theorem 10.2.1. R is uncountable.

Proof. We will show that the interval [0,1] in R is uncountable. We will prove this by contra-
diction. Recall that every real number can be represented as an infinite sequence of digits.

So suppose that
s11 s12 s13 . . . s1n . . .
s21 s22 s23 . . . s2n . . .
s31 s32 s33 . . . s3n . . .
...

...
... . . . ... . . .

sm1 sm2 sm3 . . . smn . . .
...

...
... . . . ... . . .

is a list containing all real numbers in [0,1]. Now consider the number s = t11 t22 t33 . . . tnn . . .,
where t ii 6= sii. Then s is not contained in the list.

This means that while there are equally many rational numbers as there are integers and
natural numbers (although N⊂ Z⊂Q), the set R of real numbers is strictly larger than N.
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