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Introduction
These lecture notes are for the introductory course for beginning students of mathematics at TU
Darmstadt.

The goal of this introductory course is to bring all students to a common level of knowledge,
to repeat some of the more important contents you probably learned in school and to give you
a first impression about what studying math is like. Moreover, since the course language for
this course is English, the course aims to make you familiar with the English terminology. And
because of all this, not only freshmen of the bilingual study programmes can benefit from this
course but everyone else is also cordially invited to participate. (Even if one does not plan to do
a bilingual programme, it might still be a good idea to gain some familiarity with the English
vocabulary.) Therefore, I will, in addition to the English terms, also give German translations
for most of the expressions. They will appear in brackets after the English term; for example
[Beispiel].

Chapters 1 to 9 of these notes are based on the lecture notes originally written by Dr (AUS)
Werner Nickel for the MCS introductory course and some modifications applied by Max Horn
and Dennis Frisch.

If you find any mistakes in this text or have other suggestions, comments, remarks, questions,
. . . of any sort, please feel free to contact me under:

Finally, I would like to thank Prof. Dr. K. H. Hofmann for giving permission to use his wonder-
ful drawing of the old main building on the title page of these lecture notes.

Silke Möser
21 September, 2010
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Lecture 1 — Numbers
1.1 The Natural Numbers

The natural numbers [natürliche Zahlen] count objects, e.g. 3 eggs, 160 students, about 1070

atoms in the universe.
The set of natural numbers is denoted by N. Two natural numbers can be added and multi-

plied:

3+ 5= 8 12 · 11= 132 72 = 49.

There are many interesting subsets of N, three of them are

2, 4,6, 8,10, . . . the even numbers [gerade Zahlen]
1, 3,5, 7,9, 11, . . . the odd numbers [ungerade Zahlen]
1, 4,9, 16,25, . . . the perfect squares [Quadratzahlen].

Any two natural numbers can be compared and they are either equal or one is smaller than
the other. I.e., for any two natural numbers m and n we have that

m< n m is less than n [m ist kleiner als n],
m> n m is greater than n [m ist grösser als n], or
m= n m is equal to n [m ist gleich n].

We thus say that the natural numbers are equipped with a total order [totale Ordnung].
Furthermore, if a < b and m< n, then a+m< b+ n and a ·m< b · n.
The elements of any subset of N can be put in increasing order starting with the smallest

element. Each non-empty subset of N has a unique smallest element.
However, subsets of N need not have a largest element.

Exercise 1.1.1. Find an example of a subset of N that does not have a largest element. Describe
all subsets of N that do have a largest element!

Definition 1.1.2. We say that a natural number n is divisible [teilbar] by a natural number d if
there exists a natural number m in N such that

d ·m= n.

If this is the case, we also say that d divides [teilt] n and write d|n. A natural number d that
divides n is also called a divisor [Teiler] of n. Vice versa, n is a multiple [Vielfaches] of d.

Example 1.1.3.

• The number 12 is divisible by 4.

Proof: We need to use the definition above. Here we have that n= 12 and d = 4. We have
to find a natural number m such that 12= 4 ·m. This is easy since m= 3 is such a number
(in fact the only one).
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• The number 12 is not divisible by 7.

Proof: We need to show that there is no number m such that 7 ·m= 12. (If there was such
an m, then 7 would divide 12). In other words, we need to show that no multiple of 7 is
equal to 12. The first few multiples of 7 are 7, 14, 21 which shows that 12 is not a multiple
of 7.

Exercise 1.1.4.

• Prove: If d is a divisor of n, then d = n or d < n.

• List all divisors of 12, 140 and 1001. Prove for 12 that there are no other divisors.

• Show that 7 is not a divisor of 100.

• Show that each natural number n is divisible by 1 and by n.

• Prove: If d divides m and n, then d also divides m+ n and m− n and d2 divides mn.

1.1.1 Prime numbers

Definition 1.1.5. A natural number different from 1 that is divisible by 1 and itself only is called
a prime number [Primzahl].

Examples of primes are: 2, 3, 5, 7, 2003, 213− 1.

The definition of primes raises the question how one can find primes. This is a difficult
problem in general. There is an algorithm which, in principle, can find all the primes, although
it is impractical for large prime numbers.

The sieve of Eratosthenes

This procedure finds all primes up to a given bound. It works as follows: Choose a number N ,
e.g. N = 20. List the natural numbers up to N beginning with 2:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

We iterate the following procedure: The next number which is not crossed out is a prime. We
record it and cross out all its multiples:

So, 2 is a prime. Cross out its multiples, the even numbers:

2 3 64 5 66 7 68 9 610 11 612 13 614 15 616 17 618 19 620

The next prime is 3. Cross out all multiples of 3:

2 3 64 5 66 7 68 69 610 11 612 13 614 615 616 17 618 19 620.

The next prime is 5. At this point we notice that all multiples of 5 have already been crossed
out. The same is true for 7 and all the remaining numbers. Therefore, all the remaining numbers
are primes.
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Trial division

How does one check if a natural number n is a prime? One way is to try if it is divisible by any
smaller number. To do that one has to carry out n− 2 divisions if n is a prime.

The following theorem helps in reducing the number of trial divisions because it shows that
one only has to do trial divisions with smaller prime numbers. We have already used this fact in
Eratosthenes’ Sieve because we have declared a number a prime if it was not a multiple of any
smaller prime.

Theorem 1.1.6. Any natural number n is divisible by a prime.

Proof. Consider all divisors of n different from 1. There is a smallest element q among these.
Let m be a natural number such that q ·m= n.

We will show that q is a prime. Suppose that q is not a prime. Then q has a divisor 1 < d < q
and q = d ·m′. We get

n= q ·m= (d ·m′) ·m= d · (m′ ·m).

We see that d is a divisor of n. But d is smaller than q, which contradicts the choice of q.
Therefore, it is impossible that q has a proper divisor. Hence, q is a prime.

Theorem 1.1.7 (without a proof). Each natural number is a product of primes. This product is
unique up to permuting the factors.

Theorem 1.1.8. There are infinitely many primes.

Proof. We assume that there are only finitely many primes and show that this assumption leads
to a contradiction.

Let k be the number of primes and let p1, p2, p3, . . . , pk be the finitely many primes. Consider
M := p1p2p3 . . . pk + 1. Clearly, p j divides p1p2p3 . . . pk. If p j divides M , then p j also divides
M − p1p2p3 . . . pk = 1. But no prime is a divisor of 1. Therefore, M is not divisible by any of the
k primes above. This contradicts Theorem 1.1.6.

We will now leave the prime numbers and turn our attention back to using natural numbers
for counting.

1.1.2 Counting

Example 1.1.9. Consider the five vowels A E I O U. Here are all three-letter arrangements
(without repitition of letters) of these:

AEI AEO AEU AIE AIO AIU AOE AOI AOU AUE AUI AUO EAI EAO EAU
EIA EIO EIU EOA EOI EOU EUA EUI EUO IAE IAO IAU IEA IEO IEU

IOA IOE IOU IUA IUE IUO OAE OAI OAU OEA OEI OEU OIA OIE OIU
OUA OUE OUI UAE UAI UAO UEA UEI UEO UIA UIE UIO UOA UOE UOI

If we want to write down all three-letter words, then we have 5 choices for the first letter. Once
the first letter is fixed we have 4 choices for the second letter and after that 3 choices for the
last letter. This gives 5 · 4 · 3= 60 different choices, each of which produces a different word.

The general argument goes like this: For the first object we have n choices. For the second
object we have n − 1 choices. As each choice of the first object can be combined with each
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choice of the second object, this gives n(n− 1) possibilities. For the third choice we have n− 2
possibilities. Therefore there are n(n− 1)(n− 2) possibilities to place 3 objects out of n objects
in a row. In general, there are n(n− 1)(n− 2) . . . (n− (k− 1)) possibilities to place k out of n
objects in a row.

If k = n, then this gives n(n−1)(n−2) . . . 3 ·2 ·1 possibilities to arrange n different objects in
a row. We denote the number

n(n− 1)(n− 2) . . . 3 · 2 · 1=: n!,

which is pronounced n factorial [n Fakultät]. We also set 0! := 1. This can be interpreted as
saying that there is one way to arrange no objects.

Example 1.1.10. The four symbols + − · / can be arranged in 24= 4 · 3 · 2 · 1 ways:

+− ·/ +−/ · + · −/ + ·/− +/− · + / · − −+ · / −+/·

− ·+/ − ·/+ −/+ · − / ·+ ·+− / ·+/− ·−+/ · −/+

·/+− · /−+ /+− · /+ · − /−+ · /− ·+ / ·+− / · −+

With the factorial notation we can write the number n(n− 1)(n− 2) . . . (n− (k− 1)) as

n!

(n− k)!
.

This counts the number of arrangements of k objects out of n objects.
If we were intersted in the number of ways there are to choose k objects out of n objects, then

the order in which objects are chosen would be unimportant. The words AEI and EIA consist of
the same letters and would not be considered different choices of three vowels.

Example 1.1.11. There are 10 ways to choose 3 vowels from A E I O U:

AEI AEO AEU AIO AIU AOU EIO EIU EOU IOU

In general, we need to take the number n!
(n−k)!

and divide by the number of arrangements of k
objects. This gives

n!

(n− k)!k!
.

This expression is abbreviated by
n!

(n− k)!k!
=:
�

n

k

�

,

which is pronounced as n choose k [n über k]. Note that
�n

0

�

= 1. This means that there is one
way to choose no object out of n.

Exercise 1.1.12.

• Show that
�n

k

�

=
� n

n−k

�

.
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• Show that
�n+1

k

�

=
� n

k−1

�

+
�n

k

�

.

The last property can be used to compute these numbers in a systematic way, known as Pascal’s
Triangle [Pascalsches Dreieck]:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Each number is the sum of the two numbers above. The number
�n

k

�

is the k-th element in row
n (counted from top to bottom), where we start counting from 0.

The numbers
�n

k

�

are called binomial coefficients [Binomnialkoeffizient]. The reason for this
name becomes clear from the following: Consider the powers of the expression x + y . The first
few are:

n (x + y)n

1 x + y
2 x2+ 2x y + y2

3 x3+ 3x2 y + 3x y2+ y3

4 x4+ 4x3 y + 6x2 y2+ 4x y3+ y4

Notation 1.1.13 (The Sigma Sign). The following notation is a useful shorthand to concisely
write sums and ubiquitous throughout mathematics.

Let’s do an example: Consider the sum 12+ 22+ 32+ . . .+ k2. Here we simply used the dots
and hoped that everyone would guess correctly what we mean by them. This is where the sigma
notation comes in:

12+ 22+ 32+ . . .+ k2 =:
k
∑

i=1

i2.

The expressions below and above the sigma sign specify the index variable (i in that case), and
all the values that i takes in the expression behind the sigma sign (all numbers between 1 and
k).

Comparing the numbers in the expressions above with the numbers in Pascal’s Triangle reveals
the following connection:

Theorem 1.1.14 (Binomial Theorem [Binomischer Lehrsatz]). For each natural number n we
have the following equality:

(x + y)n =
n
∑

k=0

�

n

k

�

xn−k yk.
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The expression on the right hand side is the abbreviation of the sum

�

n

0

�

xn+
�

n

1

�

xn−1 y +
�

n

2

�

xn−2 y2+ . . .+
�

n

n− 1

�

x y(n−1)+
�

n

n

�

yn.

We will give two proofs of this theorem:

Proof 1. We consider the coefficient of the expression xn−k yk and how it arises from the product

(x + y)(x + y) . . . (x + y)(x + y)
︸ ︷︷ ︸

n-times

.

Expanding the brackets, we have to multiply each occurrence of x or y with each other occur-
rence of x or y . To obtain xn−k yk we have to choose y exactly k-times. Since we are choosing
k times y out of n occurrences of y , we can do this in

�n
k

�

ways. Therefore, the term xn−k yk

occurs
�n

k

�

times.

Proof 2. We do a proof by induction [Induktion].
First, we show that the theorem is true for n= 1:

(x + y)1 = x + y =
�

1

0

�

x +
�

1

1

�

y.

Now we show that the statement of the theorem is true for n + 1 if it is true for a natural
number n.

(x + y)n+1 =(x + y)(x + y)n

=(x + y) ·
n
∑

k=0

�

n

k

�

xn−k yk

=
n
∑

k=0

�

n

k

�

xn−k+1 yk +
n
∑

k=0

�

n

k

�

xn−k yk+1

=
n
∑

k=0

�

n

k

�

xn+1−k yk +
n+1
∑

k=1

�

n

k− 1

�

xn+1−k yk

=xn+1+
n
∑

k=1

�

n

k

�

xn+1−k yk +
n
∑

k=1

�

n

k− 1

�

xn+1−k yk + yn+1

=xn+1+
n
∑

k=1

��

n

k

�

+
�

n

k− 1

��

xn+1−k yk + yn+1

=
n+1
∑

k=0

�

n+ 1

k

�

xn+1−k yk
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1.2 The Integers

The set N is closed [abgeschlossen] under taking sums and products of natural numbers. I.e.,
sums and products of natural are again natural numbers.

However the difference of two natural numbers need not be a natural number: 7− 13 =? In
other words, there is no solution to the equation 7= x + 13 in the set of natural numbers.

Thus, one defines the set Z of integers [ganze Zahlen]:

. . . ,−5,−4,−3,−2,−1, 0,1, 2,3, 4,5, . . .

The integers are closed under taking sums, products and differences.
The notions of order, divisibility and primes defined above can be extended to the set of

integers in a natural way with little changes:

Theorem 1.2.1 (without proof). Each integer is a product of primes and ±1. This product is
unique up to permuting the factors.

1.3 The Rational Numbers

The quotient of two integers need not be an integer. In fact, the quotient of an integer m and
an integer d is an integer if and only if m is divisible by d. In other words, for integers m and n
the equation m · x = n need not have a solution for x in the set of integers.

Again, we define a new set to sort out this problem, the set Q of rational numbers [rationale
Zahlen]. It consists of all fractions [Brüche] a

b
where a is an integer and b a non-zero integer.

The integer a is called the numerator [Zähler] and b is called the denominator [Nenner]. The
rationals are closed under addition, subtraction, multiplication and division.

A set of numbers in which those four arithmetic operations can be performed is called a field
[Körper]; Q is called the field of rationals numbers [Körper der rationalen Zahlen].

Arithmetic of rational numbers

Definition 1.3.1. Let a, b, c and d be integers with b and d not 0.

• Addition Two fractions are added by finding a common denominator (you may want to look
for their smallest common denominator):

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad + bc

bd
.

• Multiplication Two fractions are multiplied by multiplying numerators and denominators:

a

b
·

c

d
=

ac

bd
.

• Division A fraction is divided by another fraction by multiplying with the reciprocal [Kehrw-
ert] of the second fraction (c 6= 0):

a

b
:

c

d
=

a

b
·

d

c
=

ad

bc
.
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• Between any two different rational numbers lie infinitely many rational numbers. For this
it is enough to show that there is always a rational number lying strictly between any pair
of different rational numbers. For example, a rational number lying between the rational
numbers x and y is the number x+y

2
.

• Equality Two fractions a
b

and c
d

are equal if and only if ad = bc.

This definition implies that canceling common factors in the numerator and denominator of
a fraction does not change the value of the fraction: Let a, b and c be integers with b and c
different from 0. Then

ac

bc
=

a

b
because ac · b = bc · a.

However, certain equations do not have a solutions in the set of rational numbers. For exam-
ple, the equation x2 = 2.

Theorem 1.3.2. A solution of the equation x2 = 2 is not a rational number.

Proof. Let a
b

be a rational number with
�

a
b

�2
= 2. We may assume that a and b have no common

factor.

Then a2 = 2b2. Therefore a2 is an even number. The square of an integer is even if and only
if the integer is even. Therefore, a is even and can be written as a = 2d. This gives 2b2 = 4d2

and dividing by two gives b2 = 2d2. By the same reasoning as above, b is even. Hence a and b
contain the common factor 2, contrary to our assumption.

Exercise 1.3.3.

(i) Let n be a natural number. Show that n2 is even if and only if n is even.

(ii) Show that x2 = 6 does not have a rational solution.

(iii) Show that 1+
p

2 is not a rational number.

(iv) Show that x3 = 2 does not have a rational solution.

1.4 The Real Numbers
The set of real numbers [reelle Zahlen], denoted by R is an extension of the rational numbers
containing all limits [Grenzwerte] of rational sequences [Folgen] such as

p
2 = 1,4142135623730950488016887242096980785696718753769480731766797379907324784621 . . .

e = 2.7182818284590452353602874713526624977572470936999595749669676277240766303535 . . .

π = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862 . . .

and the solutions to equations of the form x5 + x + 1 = 0 and many more. The real numbers
are much more complicated than the rational numbers. Most real numbers cannot be written
down explicitly.
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However, one important feature of the reals is that they – just as the rationals – form a field.
The set of real numbers is often visualised by a line, called the real line [reelle Zahlengerade].

4321−4 −3 −2 −1 0

Definition 1.4.1. Let a be a non-negative real number and n a natural number. The n-th root
[n-te Wurzel] of a is a non-negative real number r such that rn = a.

Note that in general the n-th root is only defined for non-negative real numbers. Also the n-th
root of a non-negative real number is always a non-negative real number. Taking the root of a
positive number is the inverse operation to raising a real number to the n-th power.

If x is a negative number, then taking the square root is not the inverse operation of squaring

x because the square root is positive: x 6=
p

x2 =−x . The same is true for all even powers n. If
n is an odd number, however, then the n-th root is declared for all real numbers x , e.g.

3
p

−8=−2.

Definition 1.4.2. Let a be a real number. We define the following function:

|a|=







a if a > 0

0 if a = 0

−a if a < 0.

The non-negative real number |a| is called the absolute value [Betrag] of a.

Exercise 1.4.3. Let a, b and c be real numbers and ε a positive real number.

• Show that |a| ≤ c is the same as saying −c ≤ a ≤ c.

• Show that a ≤ |a| and −|a| ≤ a.

• Prove the triangle inequality: |a+ b| ≤ |a|+ |b|. Hint: Use the previous two inequalities.

• Prove the inequality |a| − |b| ≤ |a− b|.

• Show that |x − a| ≤ ε is the same as saying a−ε ≤ x ≤ a+ε. Interpret this geometrically!
What is the set of all x satisfying this condition?

• Determine the solutions of the inequalities |4− 3x |> 2x + 10 and |2x − 10| ≤ x .
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1.5 The Complex Numbers

The real numbers allow us to solve many more equations than the rational numbers, which in
turn allow solving more equations than the integers. Still, there are some simple equations we
cannot solve. In particular, the equation x2+ 1= 0 has no solution over the reals. A solution to
this would be

p
−1 if it were defined.

When faced with the problem of not being able to divide by arbitrary non-zero numbers, we
simply introduced new symbols (namely fractions). We do the same with the square root of −1
by defining the symbol i (the imaginary unit) such that

i2 =−1.

This leads to the set C of complex numbers [komplexe Zahlen]. It consists of all terms of the
form z = a+ bi, where a and b are real numbers. We call a the real part [Realteil], and b the
imaginary part [Imaginär Teil] of z. The complex numbers form a field with the real numbers
naturally embedded in them. Unlike the number sets we saw so far, the complex numbers do
not permit a natural total order.

Arithmetic of complex numbers

Definition 1.5.1. Let a, b, c, d ∈ R.

• Equality Two complex numbers a + bi and c + di are equal if and only if their real and
imaginary parts are equal, i.e., if a = c and b = d.

• Addition Two complex numbers are added as one might expect:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• Multiplication Two complex numbers are multiplied by following the normal rules of mul-
tiplication, treating i like a variable and using that i2 =−1:

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad + bc)i.

• Division A complex number is divided by another (non-zero) complex number by multi-
plying by the inverse [Inverse] of the second number. The inverse is computed as follows:

(a+ bi)−1 =
a

a2+ b2 +
−b

a2+ b2 i.

Exercise 1.5.2. Verify that the inversion formula in Definition 1.5.1 is correct.

We define the complex conjugate [komplex konjugierte] of the complex number z = a+ bi as
z̄ := a− bi. We now define the absolute value for a complex number z as

|z| :=
p

zz̄ =
p

a2+ b2.

Note that over the real numbers this coincides with the previous definition of absolute value.
Using these notations, we can write z−1 as z̄

|z|2
.

13



Complex numbers from a geometric point of view

When introducing the real numbers, we also introduced the real line.

4321−4 −3 −2 −1 0

The real line is a geometric way to visualise the real numbers. So let’s try and find out how
the arithmetic operations are reflected in this geometric setting. We can easily see that additon
is a translation and multiplication is a dilation. If the number we multiply by is negative, then
the dilation also changes the direction.

We can view the complex numbers as a product of two real lines, one for the real part and
one for the imaginary part. We can visualise complex numbers in a coordinate system:

iR

R

4i

3i

2i

i

−4i

−3i

−2i

−i

4321−4 −3 −2 −1 0

Now we can view the field of complex numbers as a two dimensional plane, the so called
complex plane [komplexe Zahlenebene].

There is another possibility to describe complex numbers:

Proposition 1.5.3. Each complex number z = a+ bi can be expressed as

z = |z| (cosφ + i sinφ),

where φ is a real number called the argument [Argument] of z and

|z| :=
p

a2+ b2

is the absolute value of z. If we take −π < φ ≤ π, then φ is uniquely determined.

Moreover, if we draw z as a vector in the complex plane, then |z| is its length and φ is the
angle between the vector and the real axis.

14



iR

R

3i

2i

i

43210

z = 3+ 2i

φ

|z|

We know from above that adding a real number to a real number is a translation. This is still
true for complex numbers.

iR

R

z1

z2

z1 + z2

Looking at the multiplication, we saw that multiplying a real number by a real number is a
dilation.
This is still correct, if we multiply a complex number by a real number.

iR

R

3i

2i

i

43210

z

2z

Now consider a complex number with non-zero imaginary part:
Let z := 2+ i. If we multiply by i we get (2+ i) · i = 2i+ i2 =−1+ 2i.
We see that |2+ i| = |−1+ 2i| and in the complex plane we see that a multiplication by i

results in a rotation about 90 degrees counterclockwise.

iR

R

2i

i

21−1−2 0

2+ i

−1+ 2i
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In general, if we multiply two complex numbers z1 and z2, we multiply the lengths and add
the angles.

Proposition 1.5.4. Let z1 =
�

�z1

�

� (cosφ1+ i sinφ1), z2 =
�

�z2

�

� (cosφ2+ i sinφ2), then

z1 · z2 =
�

�z1

�

�

�

�z2

�

� (cos (φ1+φ2) + i sin (φ1+φ2)).
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Lecture 2 — Propositional Logic
Examples of propositions: 5 is not a number. Darmstadt is in Germany. Mathematics is a science.
7 divides 12.

A proposition [Aussage] is a grammatically correct statement which it can be decided of
whether it is true or false.

More interesting than deciding whether one proposition is true or false is to decide whether a
proposition is true under certain circumstances. This process is fundamental in mathematics.

We now have a look at how to combine given propositions to new propositions and under
which circumstances the new proposition is true.

2.1 Logical operators

Whenever we construct a new proposition from other propositions we can use a truth table
[Wahrheitstabelle] to describe the newly constructed proposition. We simply write down the
value of the new one for all combinations of values of the old ones. This section gives several
examples for truth tables.

Negation: The negation [Verneinung] of a proposition A is false when A is true and vice versa
(written ¬A):

A ¬A
t f
f t

And (Conjunction): Two propositions A and B can be combined by “and” to give a new
proposition A∧ B (the conjunction [Konjunktion] of A and B) which is true precisely when both
A and B are true:

A B A∧ B
t t t
t f f
f t f
f f f

Or (Disjunction): Two propositions A and B can be combined by “or” to give a new proposi-
tion A∨ B (the disjunction [Disjunktion] of A and B) which is true precisely when at least one of
A and B is true:

A B A∨ B
t t t
t f t
f t t
f f f
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Implication: If a proposition B is true whenever another proposition A is true, then A implies
[impliziert] B. We write A⇒ B and call this statement an implication [Implikation]:

A B A⇒ B
t t t
t f f
f t t
f f t

Equivalence: A proposition A is equivalent [äquivalent] to a proposition B (written A⇔ B)
if A is true precisely when B is true and A is false precisely when B is false (also written A iff B,
which means A is true if and only if B is true).

A B A⇔ B
t t t
t f f
f t f
f f t

We give another characterisation for equivalence. And we take this as an example for a typical
proof of such logical propositional statements:

Theorem 2.1.1. Let A and B be two propositions. Then the following are equivalent:

(i) ((A⇒ B)∧ (B⇒ A))

(ii) (A⇔ B)

Proof.
A B A⇒ B B⇒ A (A⇒ B)∧ (B⇒ A)
t t t t t
t f f t f
f t t f f
f f t t t

Implications that are not equivalences

Here are some examples for implications which are only true “in one direction”, i.e., they are no
equivalences:

• For all x ∈ R: x > 0⇒ x2 > 0.

• If x and y are negative real numbers, then x · y > 0.

Now let us have a look at the converses [Umkehrung] of the above propositions:

• For all x ∈ R: x2 > 0⇒ x > 0.

• If x · y > 0 then x and y are negative real numbers.

In both cases we easily find a counterexample to refute these propositions.

18



2.2 Quantifiers

Another important feature of propositional logic are the quantifiers [Quantoren]:

All quantifier [All-Quantor]: If for each element e of a set S a proposition A(e) is given then

∀e ∈ S : A(e)

is a proposition which is true iff A(e) is true for each e ∈ S. (Read: For all e in S, A(e) is true.)

Existence quantifier [Existenz-Quantor]: If for each element e of a set S a proposition A(e)
is given then

∃e ∈ S : A(e)

is a proposition which is true iff A(e) is true for at least one e ∈ S. (Read: It exists an element e
such that A(e) is true.)

2.3 Negation of propositions

Consider the following examples:

• All sheep are black.

• It exists a male student at the TU Darmstadt.

• An animal is a lion or a duck.

• A real number is positive and negative.

Now consider the negations of the above:

• If all sheep are black, then there is no sheep with another colour. So the negation is: There
exists a sheep which is not black.

• This proposition is true if at least one student at the TU Darmstadt is male. So the negation
is: All students at the TU Darmstadt are not male.

• To be true, each animal has to be a duck or a lion. So the negation is: There is an animal
which is neither a duck nor a lion.

• The proposition is true if all real numbers are both positive and negative. So the negation
is: There is a real number which is not negative or not positive.

We summarise these insights using quantifier symbols:

Proposition 2.3.1.

• ¬(∀e ∈ S : A(e)) ⇐⇒ ∃e ∈ S : ¬A(e)

• ¬(∃e ∈ S : A(e)) ⇐⇒ ∀e ∈ S : ¬A(e)

• ¬(A∨ B) ⇐⇒ ¬A∧¬B

• ¬(A∧ B) ⇐⇒ ¬A∨¬B

As a rule of thumb you can keep in mind that a negation moving to and fro inside a proposition
flips every quantifier it passes.
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2.4 The order of quantifiers

It is very important to understand that we cannot change the order of the quantifiers in a
proposition. E.g. let A(x , y) be a proposition defined for each x and y . Then the proposition
(∀x)(∃y) : A(x , y) is not equivalent to the proposition (∃y)(∀x) : A(x , y).

This is immediately evident if you consider the following everyday example:

Example 2.4.1. Consider the following proposition:

(∀p ∈ people)(∃m ∈ people) : m is mother of p,

where people denotes the set of all people in the world (living or dead).
Then the assertion of this proposition is that every person possesses a mother, which is clearly

true.
Now assume we exchange the order of the quantifiers involved to get the proposition

(∃m ∈ people)(∀p ∈ people) : m is mother of p.

Then this proposition asserts that there is one person in the world who is the mother of every
person in the world (including herself), which is just as clearly false.
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Lecture 3 — Proof Techniques
A proof is a convincing demonstration (within the accepted standards of the field) that some
mathematical statement is necessarily true. Proofs are obtained from deductive reasoning,
rather than from inductive or empirical arguments. That is, a proof must demonstrate that
a statement is true in all cases, without a single exception.

In this chapter we will take a look at the most common and expedient proof techniques and
give examples to illustrate them.

3.1 Direct proof

A direct proof [direkter Beweis] is straightforward. The conclusion is established by logically
combining the axioms, definitions, and earlier theorems. Thus, you start out with the assump-
tions A and try to directly conclude proposition B. I.e., we want to show A =⇒ B.

Example 3.1.1.

• The sum of two even integers is even.

• If a divides b and a divides c then a divides b+ c.

3.2 Proof by contradiction

A proof by contradiction [Beweis durch Widerspruch] (also known as reductio ad absurdum) uses
the fact that a proposition can only be either true or false.

It is shown that if some statement (namely, the negation of what we aim to prove) were true,
then a logical contradiction would have to occur.

Example 3.2.1.

•
p

3 is irrational.

• There is no smallest positive (i.e., > 0) rational number.

3.3 Proof by contraposition

A proof by contraposition [Beweis durch Kontraposition] uses

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

In other words, it establishes the conclusion “if A then B” by proving the equivalent contraposi-
tive statement “if not B then not A”.

Example 3.3.1. If n2 is even, then n is even.
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3.4 Proof by induction

A proof by induction [Beweis durch vollständige Induktion] is a useful tool to prove a proposition
B(n) which is stated for all natural numbers n (or for all natural numbers greater than a given
number k ∈ N).

A proof by induction consists of two parts:

(i) Induction beginning [Induktionsanfang]: Prove B(1) (or B(k)).

(ii) Induction step [Induktionsschritt]: Assume that B(n) is true and show that B(n+ 1) is true
(making use of the fact that B(n) is true).

Imagine a domino chain. The induction step assures that a domino (here n + 1) falls if
domino n falls.

Look at this example:

Example 3.4.1. A typical example for a proof by induction is the following:

Proposition:
∑n

k=1 k = n(n+1)
2

.

Proof. We do a proof by induction.
Induction beginning: For n= 1, the claim is

1
∑

k=1

k = 1=
1 · 2

2
,

which is quite obviously true.
Induction step: Now we assume that the proposition is true for n. That means

n
∑

k=1

k =
n(n+ 1)

2

is true. With the help of this assumption we try to prove the proposition

n+1
∑

k=1

k =
(n+ 1)(n+ 2)

2
,

which is the proposition for n+ 1. We get

n+1
∑

k=1

k =
n
∑

k=1

k+ (n+ 1)

assumption
=

n(n+ 1)
2

+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)
2

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.
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To see that both steps (beginning and induction) are essentiall for the proof to be valid,
consider the following:

Example 3.4.2. Consider the proposition: 1+ n> 2+ n for all n ∈ N.
This is obviously wrong, but still it is easy to do the induction step:
Assume that the proposition is true for n. So

n+ 1> n+ 2

⇐⇒ n+ 1+ 1> n+ 2+ 1

⇐⇒ (n+ 1) + 1> (n+ 1) + 2.

But we cannot do the induction beginning because there is no smallest natural number satis-
fying n+ 1> n+ 2.

A fake induction proof

Some proofs look good at the first glance, but sometimes a subtle error is inside. Look at this
“proof”:

Theorem: All sheep have the same colour.

Proof. We proof inductively that any set of sheep consists of only sheep of a single colour, i.e., is
equicolored.
Induction start: A set containing one sheep is obviously equicolored.
Induction step: Assume that any set of n sheep is equicolored. Now consider a set of n+1 sheep.
The set formed by the first n sheep is equicolored. But so is the set formed by the last n sheep.
Hence the whole set must be equicolored.

What is wrong here?

3.5 Proof strategies

In mathematics, you often state the existence of a certain object. For example:

Theorem 3.5.1. Any two natural numbers a and b have a greatest common divisor [größter
gemeinsamer Teiler].

We will first consider two different proofs of Theorem 3.5.1.

Existence proof

Like the name promises, an existence proof [Existenzbeweis] proves the existence of something.
Let’s look at Theorem 3.5.1:

Proof. A divisor of a natural number has to be less or equal to the number. Since there are only
finitely many natural numbers which are less than or equal to a and b, respectively, only finitely
many divisors can exist.

Take 1: it is a natural number and divides both a and b. So 1 is a common divisor. Since there
are only finitely many other divisors, a greatest common divisor exists.
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At the end of the proof, we know that the theorem holds but we cannot say what the greatest
common divisor is.

Constructive proof

A constructive proof [konstruktiver Beweis] is a proof which also delivers a solution. Again we
look at Theorem 3.5.1:

Proof. For each prime number p denote by ea(p), eb(p) its exponent in the (unique!) prime
factor decompositions of a, respectively b. (Note that in either case only finitely many of the
ea(p), eb(p) are larger than zero.)

Then

d :=
∏

p prime

pmin(ea(p),eb(p))

is the greatest common divisor of a and b.

Uniqueness proof

Once we know about the existence of a solution, we might be interested in its uniqueness. Then
we have to maintain a uniqueness proof [Eindeutigkeitsbeweis].

Consider the following theorem, which is stronger than Theorem 3.5.1.

Theorem 3.5.2. Any two natural numbers a and b have a unique greatest common divisor.

Proof. Assume that there are two different greatest common divisors c and d of a and b. Since
c and d are common divisors and c is the greatest common divisor, we must have c ≥ d. The
same is true for d leading to d ≥ c and so c = d.

3.6 The pigeon hole principle

The following – surprisingly simple – theorem can very often be applied in proofs:

Theorem 3.6.1 (The pigeon hole principle [Schubfachprinzip]). Assume we are given n+ 1 balls
and n boxes and are asked to distribute the balls among the boxes. Then there exists one box which
contains more than one ball.

There is nothing to prove.

Now let us apply the pigeon hole principle to prove the following:

Proposition 3.6.2. Let n ∈ N with 2 6 |n, 5 6 |n. Then there is a number N ∈ N whose decimal
representation is N = 111 . . . 111 such that n|N .

Proof. Denote by N1, N2, . . . , Nn+1 the first n+ 1 numbers of the form 111 . . . 111, i.e.,

Ni = 111 . . . 111
︸ ︷︷ ︸

i ones

.
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Moreover, denote by Ri the remainder of Ni on division by n. Then 0 ≤ Ri ≤ n− 1. Thus, there
are only n different possible values for Ri and by the pigeon hole principle (Theorem 3.6.1)
there are i 6= j such that Ri = R j. Without loss of generality assume that i > j. Then n|(Ni −N j)
and

Ni − N j = 111 . . . 111
︸ ︷︷ ︸

i− j many

000 . . . 000
︸ ︷︷ ︸

j many

= 111 . . . 111
︸ ︷︷ ︸

i− j many

· 10 j = Ni− j · 10 j.

Since n is relatively prime to 10 j, we must have n|Ni− j.
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Lecture 4 — Functions
Definition 4.0.3. Let X and Y be sets. A function [Funktion] f from the set X to the set Y ,
denoted f : X → Y , is a rule that assigns to each element of X exactly one element of Y .

The element of Y assigned to a particular element x ∈ X is denoted by f (x) and is called the
image of x under f [Bild von x unter f ]. Vice versa, x is called a preimage [Urbild] of y = f (x).
Note that an element y ∈ Y can have more than one preimage under f or may not a have a
preimage at all.

The set X is called the domain [Definitionsbereich] of f and Y is called the range [Wertebe-
reich] of f . The set { f (x) | x ∈ X } of all images is called the image [Bild] of f .

It is important to understand that the domain and the range are an essential part of the
definition of a function. For example, consider the functions

f : R→ R x 7→ x2

g : R→ R≥0 x 7→ x2

Strictly speaking, these are two different functions. One obvious difference is that all elements
in the range of g do have a preimage, while there are elements in the range of f which do
not have a preimage (−1 for example). So the statement “All elements in the range have a
preimage.” is true for g and false for f .

Example 4.0.4.

(i) Let c ∈ Y be constant. Then the function

f : X → Y
x 7→ c

is called a constant function [konstante Funktion]. It maps each element of X to the same
value c.

(ii) The function
idX : X → X

x 7→ x

is called the identity function [Identität] of X . It maps each element of X to itself.

4.1 Properties of functions

Definition 4.1.1. Let f : X → Y be a function.

• The function f is called injective [injektiv] iff for all x1, x2 ∈ X

x1 = x2 ⇐⇒ f (x1) = f (x2).
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• The function f is called surjective [surjektiv] iff for all y ∈ Y there exists x ∈ X such that
f (x) = y .

• If f is injective and surjective then it is bijective [bijektiv], i.e., f is bijective iff for each
y ∈ Y there is a unique x ∈ X such that f (x) = y .

Example 4.1.2.

(i) The function idX is bijective.

(ii) The constant function f : x 7→ c for a fixed c is injective if and only if X has exactly one
element. It is surjective if and only if Y has exactly one element.

(iii) The function

f : R → R
x 7→ x(x − 1)(x + 1)

is not injective because f (−1) = f (0) = f (1) = 0. The function is surjective because the
equation f (x) = c is equivalent to the equation x3 − x − c = 0, which is a polynomial of
degree three, which has a zero in R.

4.2 Algebra with functions

Definition 4.2.1. We consider functions f : X → R and g : Y → R. Then we can construct new
functions

(i) f ± g : x 7→ f (x)± g(x) for x ∈ X ∩ Y ,

(ii) f · g : x 7→ f (x) · g(x) for x ∈ X ∩ Y ,

(iii) f
g

: x 7→ f (x)
g(x)

for x ∈ X ∩ Y and g(x) 6= 0,

(iv) g ◦ f : x 7→ g( f (x)) if f (X ) is contained in Y .

This is called the composition [Hintereinanderausführung/Verkettung] of functions. The
function f is the inner function [innere Funktion] and the function g is the outer function
[äußere Funktion].

Example 4.2.2. Consider the function f : R → R : f (x) =
p

x2+ 1 and decompose it as
follows: Let 1R : x 7→ 1 and

p
· : x 7→

p
x . Then

f =
p
· ◦ (idR · idR+ 1R)

Theorem 4.2.3. Let f : X → Y be a bijective function. Then there is a unique function g : Y → X
such that f ◦ g = idY and g ◦ f = idX .

The function g is called the inverse function [Umkehrfunktion] of f . We write g = f −1. If
f (x) = y , then f −1(y) = x .
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4.3 Types of functions on R
The following is a list of certain frequently appearing types of functions on R.

constant functions Let c ∈ R. Then a function f (x) = c is a constant function.

power functions The function f (x) = xn for a natural number n is called a power function
[Potenzfunktion].

polynomials A function of the form f (x) = cnxn+cn−1xn−1+ . . .+c1x+c0 is called a polynomial
function [Polynom]. Polynomial functions are built from the identity function idR and the
constant functions using +,−, ·.

rational functions A function of the form f (x) = p(x)/q(x) with polynomials p and q is called a
rational function [rationale Funktion]. Note that its maximal domain is R\{x ∈ R | q(x) =
0}.

algebraic functions Algebraic functions [algebraische Funtionen] are constructed from polyno-
mials (or, equivalently from the identity function and the constant functions) by using +,
−, ·, / and taking roots.
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Lecture 5 — Sequences
5.1 Examples and definition

The mathematical concept of a sequence [Folge] is easy to understand. First we look at a few
examples.

Example 5.1.1.

1,2, 3,4, 5,6, 7,8, 9,10, . . . the sequence of natural numbers

1,
1

2
,
1

4
,
1

8
,

1

16
, . . . , a sequence of rational numbers

−1, 1,−1,1,−1, 1,−1, . . . a sequence of 1s and −1s

π,
2

3
, 15, log 2,

p
15, . . . a sequence of random real number

The characteristic feature of a sequence of numbers is the fact that there is a first term of
the sequence, a second term, and so on. In other words, the numbers in a sequence come in a
particular order. This gives rise to the following formal definition:

Definition 5.1.2. A sequence of real numbers is a map from the natural numbers N into the
set R of real numbers. This means that for each natural number n there is an element of the
sequence, which we denote by an. In this notation, the elements of the sequence can be listed
as

a1, a2, a3, . . .

More concisely, we write (an)n∈N for the sequence.

Example 5.1.3.

(i) Let c be a fixed constant real number. Then the sequence an = c for n ∈ N is called constant
sequence [konstante Folge].

c, c, c, c, c, c, c, . . .

(ii) an =
1
n

for n ∈ N. The term a17 is 1
17

. A sequence like this is defined explicitly. It is given
by a formula which can be used directly to compute an arbitrary term of the sequence.

(iii) Here is another example of an explicitly given sequence:
�

n
n+1

�

n∈N
.

(iv) Define a1 = 1 and an+1 = an+(2n+1). This is a recursively [rekursiv]defined sequence. To
compute an+1 we need to know an, for which we need to know an−1 and so on. Sometimes
it is not difficult to find an explicit description for a recursively defined sequence. In this
case we have an = n2.
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(v) A famous (and more difficult) example for a recursively defined sequence is the Fibonacci
sequence: f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n > 2, n ∈ N. The first few terms of the
sequence are

1,1, 2,3, 5,8, 13,21, 34, . . .

There is the following closed form:

fn =
1
p

5

��

1+
p

5

2

�n

−
�

1−
p

5

2

�n�

.

5.2 Limits and convergence

We will now have a closer look at the terms of the sequences (ii) and (iii) from Example 5.1.3
above:

1,
1

2
= 0.5,

1

3
= 0.3333 . . . ,

1

4
= 0.25,

1

5
= 0.2, . . . ,

1

200
= 0.005, . . .

1

2
= 0.5,

2

3
= 0.6666 . . . ,

3

4
= 0.75,

4

5
= 0.8, . . . ,

199

200
= 0.995, . . .

While the terms of the first sequence get closer and closer to 0, the terms of the second sequence
get closer and closer to 1. Although no term of either sequence ever reaches 0 or 1, respectively,
we would like to be able to express the fact that both sequences approach a certain number and
get arbitrarily close.

Definition 5.2.1. A sequence (an)n ∈ N has a limit [Grenzwert] a ∈ R if for every ε > 0 there is
an N ∈ N such that

�

�an− a
�

�< ε for n≥ N .

If the sequence (an)n∈N has a limit a, then (an)n∈N is called convergent [konvergent] and we
write

lim
n→∞

an = a.

Read: The limit of an as n goes to∞ is a.
If a sequence is not convergent it is called divergent [divergent].

It is worthwhile to think about this definition for a while and understand what the different
parts of the definition mean. One way to interpret it is to say that a is a limit of a sequence
(an)n∈N if the distance of a to all except a finite number of terms of the sequence is smaller than
ε. The finite number of terms which may be further away from a than ε are

a1, a2, a3, . . . , aN−1.

Note that N depends on ε, although we do not explicitly state this in the definition. This is
because we have to choose N appropriately, depending on the given ε.
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Example 5.2.2. Let us consider the sequence an =
1
n

for n ∈ N. We would like to show that the
sequence has limit 0. We will follow the definition of a limit and need to show that for each
ε > 0 there is an N such that

�

�

�

�

1

n

�

�

�

�

< ε for all n≥ N .

We take ε as given. The condition 1
n
< ε is equivalent to the condition n > 1

ε
. So let us try to

choose N to be the next natural number larger than 1
ε
. Then we have that 1

N
< ε. With this we

get the following chain of inequalities for n≥ N :

1

n
≤

1

N
< ε.

In particular, we see that an =
1
n
< ε for all n ≥ N . Hence we have shown that 0 is the limit of

the sequence (1
n
)n∈N.

Example 5.2.3. The sequence 1,−1, 1,−1, . . . is divergent. It is interesting to prove this using
the definition of limit. It requires working (implicitly or explicitly) with the negation of the
defining property including the various quantifiers.

Theorem 5.2.4 (Algebra with sequences). Let (an)n∈N and (bn)n∈N be convergent sequences.
Then:

(i) (an± bn)n∈N is convergent and

lim
n→∞
(an± bn) = lim

n→∞
an± lim

n→∞
bn.

(ii) (an · bn)n∈N is convergent and

lim
n→∞
(an · bn) = lim

n→∞
an · lim

n→∞
bn.

(iii) If bn 6= 0 and limn→∞ bn 6= 0 then
�

an
bn

�

n∈N
is convergent and

lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
.

Exercise 5.2.5. What happens if one of the sequences (for example sequence (an)n∈N) is diver-
gent? What can we say about

(an+ bn)n∈N,
(an · bn)n∈N and
�

an

bn

�

n∈N
?
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5.3 One test for convergence

Definition 5.3.1. We will say that a sequence is increasing [steigend] if an ≥ am whenever
n> m. It is decreasing [fallend] if an ≤ am whenever n> m. A sequence is monotone [monoton]
if it is either increasing or decreasing.

Example 5.3.2.

• The sequence
�

1
n

�

n∈N
is decreasing since 1

n
< 1

m
if n> m.

• The sequence
�

n−1
n

�

n∈N
is increasing.

• The sequence ((−1)n)n∈N is neither increasing nor decreasing.

Definition 5.3.3. We say that a sequence (an)n∈N is bounded [beschränkt] if there are some
bu, bl ∈ R such that bl ≤ an ≤ bu for all n. In this case we call bu and bl the upper [obere
Schranke] and lower bound [untere Schranke], respectively.

Otherwise we say that (an)n∈N is unbounded [unbeschränkt].

Example 5.3.4.

• The sequence
�

1
n

�

n∈N
is bounded since 0≤ 1

n
≤ 1 for each n ∈ N.

• The sequence (2n)n∈N is unbounded since for each b ∈ N there is some n ∈ N such that
2n > b. I.e., there is no upper bound.

Theorem 5.3.5 (Monotone Convergence Theorem). Let (an)n∈N be a monotone sequence. If an is
bounded then an converges.
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Lecture 6 — Series
6.1 Partial sums and convergence

Definition 6.1.1.

(i) Let (an)n∈N be a sequence. Then a series [Reihe] is the sequence (sn)n∈N of partial sums
[Partialsummen]

sn := a1+ . . .+ an.

Usually we write
∑∞

n=1 an for the sequence (sn)n∈N and call an its terms [Summanden].

(ii) In case the series (sn)n∈N converges to s ∈ R we write

∞
∑

n=1

an := lim
n→∞

n
∑

k=1

ak = lim
n→∞

sn = s.

Remark 6.1.2. In the convergent case, the notation
∑∞

n=1 an has two different meanings:

• The sequence of partial sums (a1+ . . .+ an)n∈N, and

• a number s ∈ R, namely the limit of the partial sums; it is also called the value [Wert] of
the series.

Example 6.1.3.

(i) Decimal expansion [Dezimaldarstellung]: The decimal expansion of a number x ∈ R can be
defined as a series. The partial sums are sn = d0+

d1
10
+ . . .+ dn

10n , that is, finite expansions
up to the n-th digit. The limit is x = lim sn. For instance π= 3.14 . . .= 3+ 1

10
+ 4

100
+ . . ..

(ii) We claim
∑∞

n=1
1

n(n+1)
= 1, i.e., we claim for the sequence sn of partial sums that

sn :=
1

1 · 2
+

1

2 · 3
+ . . .+

1

n(n+ 1)
→ 1 as n→∞.

Proof: Writing

1

n(n+ 1)
=
−(n2− 1) + n2

n(n+ 1)
=−

n− 1

n
+

n

n+ 1
, for n ∈ N,

we see we can apply a telescope sum trick:

sn =
�

− 0+
1

2

�

+
�

−
1

2
+

2

3

�

+
�

−
2

3
+

3

4

�

+ . . .+
�

−
n− 1

n
+

n

n+ 1

�

=−0+
n

n+ 1
=

1

1+ 1
n

→ 1 as n→∞.
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Example 6.1.4. If we are careless, we can easily run into contradictions:

0= (1− 1) + (1− 1) + . . .= 1+ (−1+ 1) + (−1+ 1) + . . .= 1.

In naive language, infinite sums are not associative.

The following theorem give some necessary condition on a sequence in order for the corre-
sponding series to converge:

Theorem 6.1.5. If
∑∞

n=1 an converges then lim
n→∞

an = 0. (We also write an→ 0 as n→∞.)

Proof. We have an = sn− sn−1 for n≥ 2 and thus, using sn =
∑n

k=1 ak→ s,

lim
n→∞

an = lim
n→∞
(sn− sn−1) = lim

n→∞
sn− lim

n→∞
sn−1 = s− s = 0.

6.2 Important examples

In Theorem 6.1.5 we have seen that the summands of a convergent series form a null sequence.
The converse, however, does not hold as the following example shows:

Example 6.2.1. The harmonic series [harmonische Reihe]
∞
∑

k=1

1

k
= 1+

1

2
+

1

3
+

1

4
+ . . .

has terms an =
1
n

forming a null sequence.
Nevertheless, the sequence of partial sums is unbounded. Indeed, for n ≥ 1 consider the

subsequence [Teilfolge]

s2n = 1+
1

2
+

1

3
+ . . .+

1

2n

= 1+
1

2
+
� 1

3
+

1

4
︸ ︷︷ ︸

≥1/2

�

+
� 1

5
+ . . .+

1

8
︸ ︷︷ ︸

≥1/2

�

+ . . .+
� 1

2n−1+ 1
+ . . .+

1

2n
︸ ︷︷ ︸

≥1/2

�

≥ 1+
n

2
→∞.

Thus, the harmonic series does not converge.
Moreover (sn)n∈N is increasing, and hence our argument shows that

∑ 1
n

diverges to infinity;
as for sequences we denote this symbolically by

∑ 1
n
=∞.

A very important series will turn out to be the following:

Theorem 6.2.2. Let x ∈ R. The geometric series [geometrische Reihe]
∞
∑

k=0

x k = 1+ x + x2+ x3+ . . .

converges for all |x |< 1 to
∞
∑

n=0

xn =
1

1− x
,

while for |x | ≥ 1 the series diverges.
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Proof. The geometric sum gives

sn =
n
∑

j=0

x j = 1+ x + x2+ . . .+ xn =
1− xn+1

1− x
for x 6= 1. (6.1)

When |x |< 1 we see that xn→ 0 as n→∞; hence lim sn =
1

1−x
.

For |x | ≥ 1 also |xn| = |x |n ≥ 1, and so (xn) is not a null sequence and hence
∑

xn diverges
by Theorem 6.1.5.

Example 6.2.3.

•
�

�

�

1
2

�

�

�< 1 and hence

1+
1

2
+

1

4
+

1

8
+ . . .=

1

1− 1
2

= 2.

•
�

�

�

1
3

�

�

�< 1 and hence

1+
1

3
+

1

9
+

1

27
+ . . .=

1

1− 1
3

=
3

2
.

•
�

�

�−1
2

�

�

�< 1 and hence

1−
1

2
+

1

4
−

1

8
± . . .=

1

1+ 1
2

=
2

3
.

Example 6.2.4. A periodic decimal expansion is, up to an additive constant, a geometric series;
it always defines a rational number. For example,

2.34 :=2.343434 . . .= 2+
34

102 +
34

104 +
34

106 + · · ·= 2+
34

100

�

1+
1

100
+

1

1002 + . . .
�

=2+
34

100
·

1

1− 1
100

= 2+
34

100
·

100

99
= 2+

34

99
=

232

99
.

6.3 Series of real numbers

In this section we will give some criteria to test for convergence of series.

Theorem 6.3.1. A series
∑∞

n=1 an with an ≥ 0 converges if and only if its partial sums are bounded.

Proof. The assumption an ≥ 0 means that the sequence of partial sums (sn) is increasing. There-
for sn+1 ≥ sn and so sn ≤ s and hence

∑∞
n=1 an converges by Theorem 5.3.5.
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Example 6.3.2. Consider a decimal expansion 0.d1d2d3 . . . =
∑∞

n=1
dn

10n with dn ∈ {0, 1, . . . , 9}.
The partial sums

sn =
d1

10
+

d2

100
+ . . .+

dn

10n

are increasing in n and are bounded by

sn ≤
9

10
+

9

100
+ . . .+

9

10n

geom.series
=

9

10
·

1−
�

1
10

�n

1− 1
10

<
9

10
·

1

1− 1
10

=
9

10
·

10

9
= 1

(our estimate says that 0.99 . . . 9, with n digits, is indeed less than 1).
Thus, by Theorem 6.3.1 every decimal expansion converges.

This boundedness criterion can be used for a comparison test for convergence:

Theorem 6.3.3 (Majorisation of real series). Suppose (xn)n∈N is a real sequence for which there
exists a convergent series

∑∞
n=1 an of real numbers an ≥ 0 with

0≤ xn ≤ an for all n ∈ N.

Then
∑∞

n=1 xn also converges and
∑∞

n=1 xn ≤
∑∞

n=1 an.

We say that an majorises [majorisiert] xn.

Proof. Denote C :=
∑∞

k=1 ak. We consider partial sums. By assumption,
∑n

k=1 ak ≤ C and so

0≤
n
∑

k=1

xk ≤
n
∑

k=1

ak ≤ C .

Thus,
∑∞

k=1 xk converges by Theorem 6.3.1.

Exercise 6.3.4. Suppose that for a real series
∑∞

n=1 an there exists a sequence (xn)n∈N with
an ≥ xn ≥ 0 such that

∑∞
n=1 xn is divergent. Prove that

∑∞
n=1 an diverges as well.

6.4 Trigonometric and other functions

Many important functions can be defined as series:

• The exponential function [Exponentialfunktion]:

exp(x) = 1+ x +
x2

2!
+

x3

3!
+ . . .=

∞
∑

n=0

xn

n!

• The sine function [Sinusfunktion]:

sin(x) = x −
x3

3!
+

x5

5!
± . . .=

∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!

• The cosine function [Cosinusfunktion]

cos(x) = 1−
x2

2!
+

x4

4!
± . . .=

∞
∑

n=0

(−1)nx2n

(2n)!
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Lecture 7 — Continuous Functions
We talked about functions in Chapter 4. Recall that a function f : X → Y assigns to every
element x of the set X an element y = f (x) of the set Y .

7.1 Everyday examples

Example 7.1.1.

(i) If we drive a car with constant velocity v then we know from physics that the distance s
we travelled at time t equals

s = s0+ v · t,

where s0 is the initial distance at time t = 0. We see immediately that s depends on the
time t, i.e., s is a function in t.

s : [0,∞) −→ R
t 7−→ s0+ v · t

The graph of this function is illustrated in Figure 7.1 (a).

We see that small changes of the variable t induce small changes in the distance s.

(ii) If we use the train from Darmstadt to Frankfurt and we want to catch another train in
Frankfurt, then we are interested in the delay of the first train. We look at the function

w : [0,∞)−→ [0,∞)

which assignes to each delay t the time w(t) we have to wait in Frankfurt. If we assume
the first train to arrive at x x : 48 and the next train to depart at x x : 56, then a delay of 3
minutes means that we have to wait 5 minutes. And a delay of 8 minutes means that we
have to wait 0 minutes. But if we have a delay of 8+ε minutes, then we will not catch the
train and we will have to wait for the next one (assume it departs in 30 minutes).

So a delay of 8 minutes means no waiting time. But if the delay is only a little bit more
than that we will have to wait for almost 30 minutes. This means a small change in the
variable t can result in a big change of the variable w.

The graph of this function is illustrated in Figure 7.1 (b).
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t

s(t)

0

s0

(a) The function s : [0,∞)→ R in (i)
is continuous.

t/min

w(t)/min

0

30

8

8

(b) The function w : [0,∞) → [0,∞) in (ii) is not
continuous.

Figure 7.1: The graphs of the functions in Example 7.1.1.

7.2 Definitions of continuity

Definition 7.2.1 (ε-δ-condition). A function f : X → Y is called continuous [stetig] in a point
x0 ∈ X if for all ε > 0 there is a δ > 0 such that

�

� f (x)− f (x0)
�

�< ε for all x ∈ X with
�

�x − x0

�

�< δ. (7.1)

Equivalently, using quantifiers, this reads: f : X → Y is continuous in x0 ∈ X if

(∀ε > 0)(∃δ > 0)(∀x ∈ X )
�

�x − x0

�

�< δ⇒
�

� f (x)− f (x0)
�

�< ε.

Now let us have another look at our examples:

(i) Fix some value t0. We have
�

�s(t0)− s(t)
�

�=
�

�s0+ v · t0− (s0+ v · t)
�

�=
�

�v · t0− v · t
�

�=
�

�v (t0− t)
�

�= |v | ·
�

�t0− t
�

� .

Now choose ε > 0 arbitrarily and assume that
�

�s(t0)− s(t)
�

� < ε. We have to find δ > 0
such that

�

�s(t0)− s(t)
�

�< ε holds for all t with
�

�t0− t
�

�< δ. From the inequality
�

�s(t0)− s(t)
�

�= |v | ·
�

�t0− t
�

�< ε

we see that we can pick δ := ε

|v | and we can easily verify that this will work. This proves
that s is continuous.

Note also that δ may depend on ε.

(ii) Consider t0 = 8. We will show that w is not continuous in t0. I.e., we have to show
that there is some ε > 0 such that for each δ > 0 there is some t with

�

�t0− t
�

� < δ but
�

�w(t0)−w(t)
�

�> ε.

Choose ε = 1 and let δ > 0. Set t := t0 +min
¦

1, δ
2

©

. Then
�

�t0− t
�

� = min
¦

1, δ
2

©

< δ but
�

�w(t0)−w(t)
�

�= |w(t)|= 30−min
¦

1, δ
2

©

> 1.

Hence, w is not continuous at t0 = 8.
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If we have a function R→ R, then there is another characterisation of continuity:

Theorem 7.2.2 (Limit test). Let f : R→ R be a function defined on a neighbourhood U of x0 ∈ R
but not necessarily defined in x0. Then there are equivalent:

(a) f is continuous in x0,

(b) for every convergent sequence (xn)n∈N ⊂ X with limit x0 we have that

lim
n→∞

f (xn) = f
�

lim
n→∞

xn

�

= f (x0).

Proof. “⇒” Assume that the ε-δ-condition is satisfied in x0. We need to show that for any
sequence xn → x0 in the domain, the image sequence satisfies f (xn)→ f (x0). Let ε > 0
be arbitrary, and pick a δ > 0 as in Equation (7.1) on page 38. Since xn → x0, we can
choose N ∈ N such that

�

�xn− x0

�

�< δ for all n≥ N .

But then Equation (7.1) implies

�

� f (xn)− f (x0)
�

�< ε for all
�

�xn− x
�

�< δ,

which is equivalent to

�

� f (xn)− f (x0)
�

�< ε for all n≥ N ,

which implies that f (xn) converges to f (x0).

“⇐” Assume that the limit condition holds. We prove the continuity of f by contradiction.

Suppose there exists ε > 0 for which we cannot find δ > 0 such that Equation (7.1) holds.
In particular, (7.1) will not be satisfied for δ = 1

n
for any n ∈ N. Thus, there exists xn with

�

�xn− x0

�

�< 1
n

such that

�

� f (xn)− f (x0)
�

�> ε.

Hence f (xn) does not converge to f (x0).

Example 7.2.3.

(i) Consider the function f : R→ R : x 7→ x2. Choose x0 = 0. Then the function has the limit
0 in x0. For a proof, we need to choose any sequence (xn)n∈N with limn→∞ xn = 0. Now
we have to show that the sequence fn = x2

n for n ∈ N converges to 0. This, however, is not
difficult using our theorem about algebra with sequences:

lim
n→∞

x2 = lim
n→∞

xn · lim
n→∞

xn = 0 · 0= 0.
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(ii) Now let us look at a more complicated example which does not have any limit in 0. Let
f : R \ {0} → R : x 7→ sin

�

1
x

�

.

Consider the sequence xn =
1
π·n for n ∈ N. Then

f (xn) = sin
�

1
xn

�

= sin(π · n) = 0.

Now consider the sequence yn =
2

π·(4n+1)
. This again gives a sequence of function values:

f (yn) = sin
�

1
yn

�

= sin
�

π·(4n+1)
2

�

= sin
�

2nπ+ π

2

�

= 1

So this time we get 1 as the limit of our sequence.

For two different sequences we have obtained two different limits. Therefore, by the limit
test (Theorem 7.2.2), this function is not continuous in 0.

7.3 Properties of continuous functions

Theorem 7.3.1 (Algebra with continuous functions). Let f , g : U → R be two continuous func-
tions. Then

• f ± g,

• f · g,

• f
g
, and

• f ◦ g

are continuous (where they are defined).

Proof. This will be an exercise for you :-).

Example 7.3.2. The following are examples of continuous functions:

(i) All polynomials are continuous. This follows easily from the theorem about algebra with
continuous functions and from the fact that the constant functions and the identity function
on R are continuous.

(ii) Consider the following functions:

exp : R −→ R

x 7−→
∞
∑

n=0

xn

n!

sin : R −→ R

x 7−→
∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
cos : R −→ R

x 7−→
∞
∑

n=0

(−1)n
x2n

(2n)!

These functions are continuous.
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(iii) Rational functions are continuous on the subset of R where the denominator is different
from 0.

The following is an important theorem about continuous functions:

7.4 The Intermediate Value Theorem

Theorem 7.4.1 (Intermediate Value Theorem [Zwischenwertsatz]). Let f : [a, b]→ R be contin-
uous and let c be strictly between f (a) and f (b). Then there is an x strictly between a and b such
that f (x) = c.

We will not give a proof because it is very technical. See Figure 7.2 for an illustration.

a b

f (a)

f (b)

f (x) = c

x

Figure 7.2: f is a continuous function [a, b]→ R. Moreover, f (a) < c < f (b) is chosen. By the
intermediate value theorem there is x ∈ [a, b] such that f (x ) = c.

41



Lecture 8 — Differentiable Functions
Let U ⊆ R and f : U → R.

Assume that we want to construct the tangent [Tangente] t to the graph of f at a fixed point
x0 ∈ U . Since t goes through the point (x0, f (x0)), it suffices to determine the slope [Steigung]
of t.

To this end, we first draw a line lx through the points (x0, f (x0)) and (x , f (x)). This line
intersects the graph of f and is not yet the required tangent. But if we now move the point x
towards x0 on the x-axis, the line lx gets closer and closer to the tangent t. In the limit x → x0
(if it exists), the line lx and the tangent t coincide. This process is illustrated in Figure 8.1

Now have a closer look at the slope of lx . It is

f (x)− f (x0)
x − x0

.

Since lx tends to t as x tends to x0, the slope of t is the limit

lim
x→x0

f (x)− f (x0)
x − x0

.

8.1 Definition of differentiability

Definition 8.1.1. Let f : (a, b)→ R be a function and x0 ∈ (a, b). Then f is called differentiable
[differenzierbar] in x0 if the limit

lim
x→x0

f (x)− f (x0)
x − x0

exists and coincides for all sequences xn→ x0. The derivative [Ableitung] of f in x0 is denoted
by f ′(x0) (Read: f prime of x0).

If f is differentiable in each point of (a, b) then it is called differentiable on (a, b). In this
case, f ′ is a function (a, b)→ R.

x0

t

x

lx

Figure 8.1: The tangent t in a point x0 can be constructed as the limit of a sequence of secants.
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(The last step is more abstract than it seems. It takes us in one stride from a single value
f ′(x0) to a function f ′)

Theorem 8.1.2. If f : (a, b)→ R is differentiable in x0 then f is also continuous in x0.

Proof. Let x0 ∈ (a, b). Then the limit

lim
x→x0

f (x)− f (x0)
x − x0

exists since f is differentiable in x0. As x goes to x0, the numerator converges to zero. Hence
the limit can only exist if the denominator also converges to zero. If the denominator converges
to zero then f (x) converges to f (x0). In other words,

lim
x→x0

f (x) = f (x0).

This is our definition of continuity.

On the other hand, continuity of f does not imply differentiability as the following example
will show:

Example 8.1.3. Consider the function

f : R−→R
x 7−→|x |.

We look at x0 = 0 and show that f is continous in x0. We choose a sequence (xn)n∈N ⊂ R
which approaches 0 from above (we denote this by xn↘ 0). Then this yields

lim
xn↘0

f (xn) = lim
xn↘0
|xn|

xn>0
= lim

xn↘0
xn = 0.

If we consider a sequence xn which approaches 0 from below (we denote this by xn↗ 0), then
we get

lim
xn↗0

f (xn) = lim
xn↗0
|xn|

xn<0
= lim

xn↗0
−xn = 0.

This shows that f is continous in x0.
Now let us check whether f is differentiable. Again we choose a sequence xn↘ 0. This yields

lim
xn↘0

f (xn)− f (0)
xn− 0

= lim
xn↘0

f (xn)
xn

= lim
xn↘0

�

�xn

�

�

xn

xn>0
= lim

xn↘0

xn

xn
= 1.

On the other hand, if we have a sequence xn↗ 0, we get

lim
xn↗0

f (xn)− f (0)
xn− 0

= lim
xn↗0

f (xn)
xn

= lim
xn↗0

�

�xn

�

�

xn

xn<0
= lim

xn↗0

−xn

xn
=−1.

We see that the limits do not coincide, which means that f is not differentiable in x0 = 0.
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While a differentiable function is continous, the derivative of a continous function need not
be continous.

Another way to write the definition

f ′(x0) = lim
x→x0

f (x)− f (x0)
x − x0

of the derivative of f at x0 is to write the sequence xn with limit x0 as x0 + h and look at the
limit h→ 0. Then we get

f ′(x0) = lim
h→0

f (x0+ h)− f (x0)
h

.

Now we look at a few examples and determine some derivatives:

Example 8.1.4.

(i) f : R→ R : x 7→ c · x with c ∈ R.

f ′(x0) = lim
xn→x0

cxn− cx0

xn− x0
= lim

xn→x0

c(xn− x0)
xn− x0

= c.

(ii) f : R→ R : x 7→ x k.

f ′(x0) = lim
xn→x0

x k
n − x k

0

xn− x0
= lim

xn→x0
(x k−1

n + x k−2
n x0+ . . .+ xn−1

0 ) = kx k−1
0 .

8.2 Properties of differentiable functions

Theorem 8.2.1 (Algebra with differentiable functions). Let f , g : (a, b) → R be two functions
differentiable in x0. Then

• f ± g

• f · g

• f
g

• f ◦ g

is differentiable and the derivative is

• ( f ± g)′ = f ′± g ′

• ( f g)′ = f ′g + f g ′(product rule [Produktregel])

• f
g
= f ′g− f g′

g2 (quotient rule [Quotientenregel])

• ( f ◦ g)′ = f ′ ◦ g · g ′ ( chain rule [Kettenregel])
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Proof.

• f ± g: Exercise.

• f · g:

lim
xn→x0

( f g)(xn)− ( f g)(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (x0)g(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (x0)g(x0) +

=0
︷ ︸︸ ︷

f (xn)g(x0)− f (xn)g(x0)
xn− x0

= lim
xn→x0

f (xn)g(xn)− f (xn)g(x0) + f (xn)g(x0)− f (x0)g(x0)
xn− x0

= lim
xn→x0

f (xn)(g(xn)− g(x0)) + ( f (xn)− f (x0))g(x0)
xn− x0

= lim
xn→x0

f (xn)(g(xn)− g(x0))
xn− x0

+
( f (xn)− f (x0))g(x0)

xn− x0

= lim
xn→x0

f (xn)
(g(xn)− g(x0))

xn− x0
+ g(x0)

( f (xn)− f (x0))
xn− x0

= lim
xn→x0

f (xn) lim
xn→x0

(g(xn)− g(x0))
xn− x0

+ lim
xn→x0

g(x0) lim
xn→x0

( f (xn)− f (x0))
xn− x0

= f (x0)g
′(x0) + g(x0) f

′(x0).

• f
g
: Exercise.

• f ◦ g: (we do the proof in the case where g is injective). Write

( f ◦ g)(xn)− ( f ◦ g)(x0)
xnx0

=
( f ◦ g)(xn)− ( f ◦ g)(x0)

g(xn)− g(x0)
g(xn)− g(x0)

xn− x0

Here we used the injectivity of g, which assures that g(xn) − g(x0) 6= 0. Now we can
determine the limit:

lim
xn→x0

( f ◦ g)(xn)− ( f ◦ g)(x0)
xn− x0

= lim
xn→x0

( f ◦ g)(xn)− ( f ◦ g)(x0)
g(xn)− g(x0)

g(xn)− g(x0)
xn− x0

= lim
xn→x0

f (g(xn))− f (g(x0))
g(xn)− g(x0)

g(xn)− g(x0)
xn− x0

= lim
xn→x0

f (g(xn))− f (g(x0))
g(xn)− g(x0)

lim
xn→x0

g(xn)− g(x0)
xn− x0

= f ′(g(x0))g
′(x0)
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Now we shall have a look at a useful application from everday life. At first we have the
following definition:

Definition 8.2.2. Let f : (a, b)→ R be a function and x0 ∈ (a, b). Then x0 is called

• local minimum [lokales Minimum] if there exists an ε > 0 such that for all x ∈ (x0−ε, x0+
ε) f (x0)≤ f (x)

• local maximum [lokales Maximum] if there exists an ε > 0 such that for all x ∈ (x0−ε, x0+
ε) f (x0)≥ f (x).

• local extremum [lokale Extremstelle] if x0 is either a local maximum or a local minimum.

Now we can formulate the following important theorem:

Theorem 8.2.3 (Local extrema). Let f : (a, b)→ R be a differentiable function and x0 ∈ (a, b).
If f has a local extremum in x0 then f ′(x0) = 0.

Proof. Let x0 be a local extremum. Without loss of generality we may assume that x0 is a local
maximum; i.e., f (x0)≥ f (x) for all x ∈ (x0− ε, x0+ ε). Then

f ′(x0) = lim
h→0,h<0

f (x0+ h)− f (x0)
h

≥ 0

since f (x0+ h)− f (x0)≤ 0 and h< 0. But on the other hand

f ′(x0) = lim
h→0,h>0

f (x0+ h)− f (x0)
h

≤ 0

since f (x0+h)− f (x0)≤ 0 and h> 0. Since f is differentiable these two limits have to coincide,
which yields f ′(x0) = 0.

8.3 The Mean Value Theorem

Theorem 8.3.1 (Mean Value Theorem [Mittelwertsatz]). Let f : [a, b] → R be a differentiable
function. Then there is a real number c, a < c < b, such that

f ′(c) =
f (b)− f (a)

b− a
.

This theorem seems rather technical, but it is beautifully illustrated by drawing a wavy graph
and showing that there is a point where the tangent has the same slope as the line through the
endpoints of the graph; see Figure 8.2 for an illustration.

One should point out that c need not be unique. Also this theorem is a typical existence
theorem. It tells us that something exists, but gives us no hints how to find it. Even for simple
functions it might be impossible to actually determine the value of such a c.
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a b

f (a)

f (b)

c

f (c)

Figure 8.2: An illustration for the mean value theorem. The tangent through (c, f (c)) has slope
f (b)− f (a)

b−a
.

8.4 One application and tool: L’Hôspital’s Rule

The following theorem yields another way to find limits:

Theorem 8.4.1 (L’Hôspital’s Rule [Regel von L’Hôspital]). Let f , g : (a, b) → R be differentiable
functions and x0 ∈ (a, b). Furthermore, let lim

x→x0
f (x) = lim

x→x0
g(x) = 0. We consider the function

f (x)
g(x)

.

If lim
x→x0

f ′(x)
g′(x)

exists then lim
x→x0

f (x)
g(x)

exists and

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g ′(x)

.

Remark 8.4.2.

• We can only apply this rule for limits where the variable approaches a real number, i.e.,
not∞. So if we have

lim
n→∞

sin
�

1
n

�

n,

then we cannot apply l’Hôspital’s rule. First we have to substitute the sequence by (for
example) k := 1

n
. As n goes to infinity, k goes to 0. This yields

lim
n→∞

n sin
�

1
n

�

= lim
k→0

sin(k)
k

.

Now we can apply l’Hôspital’s rule and we get

lim
n→∞

n sin
�

1
n

�

= lim
k→0

sin(k)
k
= lim

k→0

cos(k)
1

= 1.

47



• Also note that it is crucial that lim
x→x0

f (x) = lim
x→x0

g(x) = 0. Consider, for instance,

lim
x→0

sin x

cos x
=

sin0

cos 0
=

0

1
= 0

but

lim
x→0

(sin x)′

(cos x)′
= lim

x→0

cos x

− sin x
=−∞.

f

g

x0

Figure 8.3: Two functions f , g : R → R with f (x0) = g(x0) = 0. By l’Hôspital’s rule,
lim

x→x0

f (x)
g(x)
= lim

x→x0

f ′(x)
g′(x)

.
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ε-δ-condition, 38

absolute value, 12
algebraic functions, 28
all quantifier, see quantifier
argument

of a complex number, 14

bijective, 27
binomial coefficient, 7, 8
Binomial Theorem, 8
bounded, 35

sequence, 32

chain rule, 44
closed, 10
complex conjugate, 13
complex numbers, 13
complex plane, 14
composition, 27
conjunction, 17
constant function, 26, 28
constant sequence, 29
constructive proof, 24
continuous, 38, 40, 41, 43
convergence, 33
convergent, 30
converse

of a proposition, 18
cosine, 36, 40

decimal expansion, 33, 35, 36
decreasing, 32
denominator, 10
derivative, 42
differentiable, 42
direct proof, 21
disjunction, 17
divergent, 30
divide, see divisible
divisible, 4, 10
divisor, 4

domain
of a function, 26

equivalent, 18
even numbers, 4
existence proof, 23
existence quantifier, see quantifier
exponential function, 36, 40

factorial, 7
field, 10

of complex numbers, 13
of rational numbers, 10
of real numbers, 12

fraction, 10
function, 26

geometric series, 34
greatest common divisor, 23

harmonic series, 34

identity function, 26
image

of a function, 26
of a point, 26

imaginary part, 13
implication, 18
imply, see implication
increasing, 32
induction, 9, 22, 23
induction beginning, 22
induction step, 22
injective, 26
inner function, 27
integer, 10
Intermediate Value Theorem, 41
inverse

of a complex number, 13
inverse function, 27

L’Hôspital’s Rule, 47
limit, 11, 30, 33
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limit test
for continuity, 39

local extremum, 46
local maximum, 46
local minimum, 46
lower bound

of a sequence, 32

majorisation, 36
Mean Value Theorem, 46
monotone, 32
Monotone Convergence Theorem, 32
multiple, 4

n choose k, see binomial coefficient
n-th root, 12
natural numbers, 4
negation, 17, 19
numerator, 10

odd numbers, 4
outer function, 27

partial sums, 33
Pascal’s Triangle, 8
pigeon hole principle, 24
polynomial function, 28
power function, 28
preimage, 26
prime number, 5, 6
product rule, 44
proof by contradiction, 21
proof by contraposition, 21
proof by induction, see induction
proposition, 17

quantifier, 19
quotient rule, 44

range
of a function, 26

rational function, 28, 41
rational numbers, 10
real line, 12
real numbers, 11
real part, 13
reciprocal, 10
recursive, 29

sequence, 11, 29
series, 33
sieve of Eratosthenes, 5
sine, 36, 40
slope, 42
squares, 4
subsequence, 34
surjective, 27

tangent, 42, 46, 47
telescope sum, 33
term

of a series, 33
total order, 4
truth table, 17

unbounded
sequence, 32

uniqueness proof, 24
upper bound

of a sequence, 32

value
of a series, 33
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