Introductory Course Mathematics
 Exercise Sheet 8 with hints

G34 Determine the tangent at x_{0} :
(a) $f(x)=2 x^{3}-7, \quad x_{0}=-1$
(b) $f(x)=\frac{1}{x}, \quad x_{0}=\frac{1}{2}$

Solution: In each case we will describe the tangent as a function $t: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto t(x)$. We use the equation

$$
\frac{t(x)-t\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)
$$

to determine the equation for the tangent:

$$
t(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right),
$$

since $t\left(x_{0}\right)=f\left(x_{0}\right)$.
(a) $f^{\prime}\left(x_{0}\right)=6 x_{0}=-6, f\left(x_{0}\right)=-9$ and hence

$$
t(x)=-6 x-6-9=-6 x-15
$$

(b) $f^{\prime}\left(x_{0}\right)=-\frac{1}{x_{0}^{2}}=-4, f\left(x_{0}\right)=2$ and hence

$$
t(x)=-4 x+2+2=4 x+4
$$

G35 Does $\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}\right)-f(x)}{x_{0}-x}$ exist for the following function?

$$
f(x)=\left|x^{3}\right|, \quad x_{0}=0
$$

Use the definition of differentiability to decide whether the function is differentiable in $x_{0}=0$.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}\right)-f(x)}{x_{0}-x} & =\lim _{x \rightarrow x_{0}} \frac{\left|x_{0}^{3}\right|-|x|^{3}}{x_{0}-x} \\
& =\lim _{x \rightarrow x_{0}} \frac{|x|^{3}}{x} \\
& = \begin{cases}\lim _{x \rightarrow x_{0}} \frac{x^{3}}{x}=\lim _{x \rightarrow x_{0}} x^{2}=0 & \text { if } x \searrow 0 \\
\lim _{x \rightarrow x_{0}} \frac{-x^{3}}{x}=\lim _{x \rightarrow x_{0}}-x^{2}=0 & \text { if } x \nearrow 0\end{cases}
\end{aligned}
$$

Thus, the limit exists and hence f is differentiable in $x_{0}=0$.

G36 Prove from the definition of differentiability:
(a) If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$.
(b) If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$.
(c) If $f(x)=x^{n}$, for $n \in \mathbb{N}$, then $f^{\prime}(x)=n x^{n-1}$.
(d) If $f(x)=\frac{1}{x}$, then $f^{\prime}(x)=-\frac{1}{x^{2}}$.

Solution: Use the definition via the limit.
G37 Write the following function as a composition of simpler functions and calculate their derivatives using the chain rule: $f(x)=\sqrt{\left(2 x^{2}+x\right)^{3}+1}$

Solution: Let $g: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x^{3}+1$ and $h: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 x^{2}+x$. Then

$$
f=\sqrt{ } \circ \circ g \circ h
$$

and

$$
f^{\prime}(x)=\frac{3\left(2 x^{2}+x\right)^{2}(4 x+1)}{2 \sqrt{\left(2 x^{2}+x\right)^{3}+1}} .
$$

G38 Prove using the defintion by power series from Lectures 6 and 7:
(a) If $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$.
(b) If $f(x)=\sin x$ then $f^{\prime}(x)=\cos x$.
(c) If $f(x)=\cos x$ then $f^{\prime}(x)=-\sin x$.

Solution: (a) $f(x)=e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=0+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ and hence

$$
\begin{aligned}
f^{\prime}(x) & =(0)^{\prime}+\sum_{n=1}^{\infty}\left(\frac{x^{n}}{n!}\right)^{\prime}=0+\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!} \\
& =\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =e^{x}
\end{aligned}
$$

(b) $f(x)=\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ and hence

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty}\left((-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\right)^{\prime}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n+1) x^{2 n}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=\cos x
\end{aligned}
$$

(c) $f(x)=\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=0+\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ and hence

$$
\begin{aligned}
f^{\prime}(x) & =(0)^{\prime}+\sum_{n=1}^{\infty}\left((-1)^{n} \frac{x^{2 n}}{(2 n)!}\right)^{\prime}=0+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n x^{2 n-1}}{(2 n)!} \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =-\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=-\sin x
\end{aligned}
$$

G39 Compute the derivatives of the following functions:
(a) $f_{1}(x)=x^{4}-x^{2}+5 x-7$
(b) $f_{2}(x)=\frac{x^{2}+5}{\sqrt{x^{2}-7 x+1}}$
(c) $f_{3}(x)=x^{2} e^{x^{2}}$
(d) $f_{4}(x)=2^{x}$
(e) $f_{5}(x)=x^{x}$

Solution: (a) $f_{1}^{\prime}(x)=4 x^{3}-2 x+5$
(b) $f_{2}^{\prime}(x)=\frac{2 x \cdot \sqrt{x^{2}-7 x+1}-\left(x^{2}+5\right) \frac{2 x-7}{2 \sqrt{x^{2}-7 x+1}}}{x^{2}-7 x+1}$
(c) $f_{3}^{\prime}(x)=2 x e^{x^{2}}+x^{2} e^{x^{2}} 2 x$
(d) $f_{4}(x)=2^{x}=e^{x \ln 2}$ and hence $f_{4}^{\prime}(x)=e^{x \ln 2} \ln 2=2^{x} \cdot \ln 2$
(e) $f_{5}(x)=x^{x}=e^{x \ln x}$ and hence $f_{5}^{\prime}(x)=e^{x \ln x}\left(\ln x+x \cdot \frac{1}{x}\right)=x^{x}(\ln x+1)$

G40 Show, that $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$.

Solution:

$$
\begin{aligned}
(f \pm g)^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{(f \pm g)(x)-(f \pm g)\left(x_{0}\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{f(x) \pm g(x)-f\left(x_{0}\right) \mp g\left(x_{0}\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\left(f(x)-f\left(x_{0}\right)\right) \pm\left(g(x)-g\left(x_{0}\right)\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \pm \lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}} \\
& =f^{\prime}\left(x_{0}\right) \pm g^{\prime}\left(x_{0}\right)
\end{aligned}
$$

G41 Use the product rule and the chain rule to prove the quotient rule.
Solution: $\frac{f}{g}=f \cdot \frac{1}{g}$ and $\frac{1}{g}=h \circ g$, where $h: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}: x \mapsto \frac{1}{x}$.
Thus we get

$$
\begin{aligned}
& r c l\left(\frac{f}{g}\right)^{\prime} \stackrel{\text { product rule }}{=} \\
& f^{\prime} \cdot \frac{1}{g}+f \cdot\left(\frac{1}{g}\right)^{\prime} \\
& \begin{array}{c}
\text { chain rule } \\
=
\end{array} \\
& f^{\prime} \cdot \frac{1}{g}+f \cdot \frac{-g^{\prime}}{g^{2}} \\
&=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

G42 Decompose a fixed real number c into two summands such that their product is maximal.

Solution: Let $c=x+y$. Then $y=c-x$ and we want to maximise the function $f: \mathbb{R} \rightarrow$ $\mathbb{R}: f(x)=x(c-x)$. We compute $f^{\prime}(x)=-2 x+c$. By the theorem on local extrema, the local maximum $x_{\max }$ must satisfy $f^{\prime}\left(x_{\max }\right)=0$ and hence $x_{\max }=\frac{c}{2}$.
Now check that this is indeed a maximum by comparing the function value with the function values of points in the neighbourhood.

