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Exercise Sheet 8 with hints

G34 Determine the tangent at x0 :

(a) f(x) = 2x3 − 7, x0 = −1

(b) f(x) = 1
x
, x0 = 1

2

Solution: In each case we will describe the tangent as a function t : R→ R : x 7→ t(x). We use
the equation

t(x)− t(x0)
x− x0

= f ′(x0)

to determine the equation for the tangent:

t(x) = f ′(x0)(x− x0) + f(x0),

since t(x0) = f(x0).

(a) f ′(x0) = 6x0 = −6, f(x0) = −9 and hence

t(x) = −6x− 6− 9 = −6x− 15.

(b) f ′(x0) = − 1
x2
0

= −4, f(x0) = 2 and hence

t(x) = −4x + 2 + 2 = 4x + 4.

G35 Does lim
x→x0

f(x0)− f(x)

x0 − x
exist for the following function?

f(x) =
∣∣x3
∣∣ , x0 = 0

Use the definition of differentiability to decide whether the function is differentiable in
x0 = 0.

Solution:

lim
x→x0

f(x0)− f(x)
x0 − x

= lim
x→x0

∣∣x3
0

∣∣− |x|3
x0 − x

= lim
x→x0

|x|3

x

=

 lim
x→x0

x3

x = lim
x→x0

x2 = 0 if x↘ 0

lim
x→x0

−x3

x = lim
x→x0

−x2 = 0 if x↗ 0

Thus, the limit exists and hence f is differentiable in x0 = 0.



G36 Prove from the definition of differentiability:

(a) If f(x) = x2, then f ′(x) = 2x.

(b) If f(x) = x3, then f ′(x) = 3x2.

(c) If f(x) = xn, for n ∈ N, then f ′(x) = nxn−1.

(d) If f(x) = 1
x
, then f ′(x) = − 1

x2 .

Solution: Use the definition via the limit.

G37 Write the following function as a composition of simpler functions and calculate
their derivatives using the chain rule: f(x) =

√
(2x2 + x)3 + 1

Solution: Let g : R→ R : x 7→ x3 + 1 and h : R→ R : x 7→ 2x2 + x. Then

f =
√
· ◦ g ◦ h

and

f ′(x) =
3(2x2 + x)2(4x + 1)
2
√

(2x2 + x)3 + 1
.

G38 Prove using the defintion by power series from Lectures 6 and 7:

(a) If f(x) = ex then f ′(x) = ex.

(b) If f(x) = sin x then f ′(x) = cos x.

(c) If f(x) = cos x then f ′(x) = − sin x.

Solution: (a) f(x) = ex =
∞∑

n=0

xn

n! = 0 +
∞∑

n=1

xn

n! and hence

f ′(x) = (0)′ +
∞∑

n=1

(
xn

n!

)′
= 0 +

∞∑
n=1

nxn−1

n!

=
∞∑

n=1

xn−1

(n− 1)!
=
∞∑

n=0

xn

n!

= ex

(b) f(x) = sin x =
∞∑

n=0
(−1)n x2n+1

(2n+1)! and hence

f ′(x) =
∞∑

n=0

(
(−1)n x2n+1

(2n + 1)!

)′
=
∞∑

n=0

(−1)n (2n + 1)x2n

(2n + 1)!

=
∞∑

n=0

(−1)n x2n

(2n)!
= cos x

(c) f(x) = cos x =
∞∑

n=0
(−1)n x2n

(2n)! = 0 +
∞∑

n=1
(−1)n x2n

(2n)! and hence

f ′(x) = (0)′ +
∞∑

n=1

(
(−1)n x2n

(2n)!

)′
= 0 +

∞∑
n=1

(−1)n 2nx2n−1

(2n)!

=
∞∑

n=1

(−1)n x2n−1

(2n− 1)!
=
∞∑

n=0

(−1)n+1 x2n+1

(2n + 1)!

= −
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= − sin x



G39 Compute the derivatives of the following functions:

(a) f1(x) = x4 − x2 + 5x− 7

(b) f2(x) = x2+5√
x2−7x+1

(c) f3(x) = x2ex2

(d) f4(x) = 2x

(e) f5(x) = xx

Solution: (a) f ′1(x) = 4x3 − 2x + 5

(b) f ′2(x) =
2x ·
√

x2 − 7x + 1− (x2 + 5) 2x−7
2
√

x2−7x+1

x2 − 7x + 1

(c) f ′3(x) = 2xex2
+ x2ex2

2x

(d) f4(x) = 2x = ex ln 2 and hence f ′4(x) = ex ln 2 ln 2 = 2x · ln 2

(e) f5(x) = xx = ex ln x and hence f ′5(x) = ex ln x(ln x + x · 1
x) = xx(ln x + 1)

G40 Show, that (f ± g)′ = f ′ ± g′.

Solution:

(f ± g)′(x0) = lim
x→x0

(f ± g)(x)− (f ± g)(x0)
x− x0

= lim
x→x0

f(x)± g(x)− f(x0)∓ g(x0)
x− x0

= lim
x→x0

(f(x)− f(x0))± (g(x)− g(x0))
x− x0

= lim
x→x0

f(x)− f(x0)
x− x0

± lim
x→x0

g(x)− g(x0)
x− x0

= f ′(x0)± g′(x0)

G41 Use the product rule and the chain rule to prove the quotient rule.

Solution: f
g = f · 1

g and 1
g = h ◦ g, where h : R \ {0} → R : x 7→ 1

x .

Thus we get

rcl

(
f

g

)′
product rule

= f ′ · 1
g

+ f ·
(

1
g

)′
chain rule= f ′ · 1

g
+ f · −g′

g2

=
f ′g − fg′

g2

G42 Decompose a fixed real number c into two summands such that their product is
maximal.

Solution: Let c = x + y. Then y = c − x and we want to maximise the function f : R →
R : f(x) = x(c − x). We compute f ′(x) = −2x + c. By the theorem on local extrema, the local
maximum xmax must satisfy f ′(xmax) = 0 and hence xmax = c

2 .

Now check that this is indeed a maximum by comparing the function value with the function
values of points in the neighbourhood.


