Introductory Course Mathematics Exercise Sheet 5 with hints

G19 (Limits I)

(a) Consider the sequence

$$
a_{n}=\frac{2 n-3}{5 n+7}, \quad n \in \mathbb{N} .
$$

(i) Show that the limit of this sequence is $\frac{2}{5}$.
(ii) Which terms of the sequence are closer to $\frac{2}{5}$ than $\varepsilon=\frac{1}{10}$?
(b) (i) What is the limit of the sequence $a_{n}=\frac{1}{2^{n}}$ for $n \in \mathbb{N}$?
(ii) What is the limit of the sequence

$$
\frac{1}{2}, \quad \frac{1}{2}+\frac{1}{4}, \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}, \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots
$$

Can you give a geometric interpretation of this limit process?
(c) The first terms of an infinite sequence are $1,3,7,15,31,63$.
(i) Find a recursive definition for the sequence.
(ii) Find an explicit definition.
(d) Find a recursive definition for the sequence

$$
\sqrt{2}, \quad \sqrt{2 \sqrt{2}}, \quad \sqrt{2 \sqrt{2 \sqrt{2}}}, \quad \cdots
$$

What is the limit of this sequence?
Solution:
(a) (i)

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{2 n-3}{5 n+7} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}\right)=\lim _{n \rightarrow \infty} \frac{2-\frac{3}{n}}{5+\frac{7}{n}}=\frac{2}{3}
$$

(ii) Solve the inequality $\left|\frac{2 n-3}{5 n+7}-\frac{2}{5}\right| \leq \frac{1}{10}$ for n.
(b) (i) Shown (for example by induction) that $2^{n}>n$. This implies $0<\frac{1}{2^{n}}<\frac{1}{n}$. Thus, the limit is 0 .
(ii) Set

$$
a_{n}:=\sum_{k=1}^{n} \frac{1}{2^{k}} .
$$

Then

$$
a_{n}=1-\frac{1}{2^{n}} .
$$

Therefore, the limit is 1 .
Consider a round cake. Adding up the sum above means that we start out with half the cake. Then we add half of the rest to that $\left(\frac{1}{4}\right)$, then again half of the remainder $\left(\frac{1}{8}\right)$ and so on. This illustrates that the limit is 1.
(c) (i) $a_{1}=1, a_{n+1}=2 a_{n}+1$
(ii) $a_{n}=2^{n}-1$
(d) $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2 a_{n}}$.

First show that the sequence is convergent. (It is increasing and bounded.) Then show that the limit a satisfies $a=\sqrt{2 a}$, which has solutions 0 and 2 . But 0 cannot be the limit since $\left(a_{n}\right)_{n \in \mathbb{N}}$ is increasing and $0<a_{1}$. Thus, $\lim _{n \rightarrow \infty} a_{n}=2$.

G20 (Limits II)

Determine the limit (if it exists) of

$$
\begin{gathered}
a_{n}=\frac{5}{n}+\frac{7 n}{n^{2}+1}, \quad b_{n}=\left(6+\frac{1}{n}\right)\left(\frac{n+2}{2 n+1}-1\right), \quad c_{n}=\frac{2 n^{2}-2}{3 n^{2}-3} \\
d_{n}=\frac{\frac{1}{n^{2}}+\frac{1}{n^{3}}}{\frac{1}{n}+\frac{1}{n^{2}}}, \quad e_{n}=\frac{2 n+(-1)^{n} n}{n+1}
\end{gathered}
$$

Solution: Apply standard arguments.

G21 (Limits III)

Determine the limit (if it exists) of
(a) $a_{n}=\sqrt{n^{2}+1}-n, \quad n \in \mathbb{N}$.
(b) $b_{n}=n\left(\sqrt{n^{2}+1}-n\right), \quad n \in \mathbb{N}$.
(c) $c_{n}=n^{2}\left(\sqrt{n^{2}+1}-n\right), \quad n \in \mathbb{N}$.

Solution:
(a)

$$
\begin{aligned}
a_{n} & =\sqrt{n^{2}+1}-n=\frac{\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)}{\sqrt{n^{2}+1}+n} \\
& =\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{n^{2}+1}+n}=\frac{\frac{1}{n}}{\sqrt{n+\frac{1}{n^{2}}}+1} \rightarrow 0
\end{aligned}
$$

(b)

$$
b_{n}=\frac{n}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}+1} \rightarrow \frac{1}{2}
$$

(c)

$$
c_{n}=\frac{n^{2}}{\sqrt{\left(n^{2}+1\right)}+n}=\frac{n}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}+1}>\frac{n}{\sqrt{1}+1} \rightarrow \infty
$$

G22 (The Fibonacci Sequence)

Consider the closed form for the Fibonacci sequence as given in the lecture:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

(a) Prove that f_{n} is a natural number for $n=1,2,3$.
(b) Prove that it is a natural number for every $n \in \mathbb{N}$.

Solution:

(a) Simple calculations show that $f_{1}=f_{2}=1$ and $f_{3}=2$.
(b) Prove the recursion formula for the Fibonacci numbers, i.e., $f_{n+1}=f_{n}+f_{n-1}$. Then the claim follows by induction.

