

Introductory Course Mathematics Exercise Sheet 4 with hints

G14 (Injectivity, Surjectivity, Bijectivity I)

(a) Which of the following functions are injective, surjective, bijective?

$f_1:\mathbb{R}$	\rightarrow	\mathbb{R}	f_4			
<i>v</i> -	\mapsto			x	\mapsto	x^3
$f_2: \mathbb{R}_{>0}$		_	$f_5: \mathbb{R} \setminus \{$			
	\mapsto			x	\mapsto	$\frac{1}{x}$
$f_3: \mathbb{R}_{\geq 0}$	\rightarrow	$\mathbb{R}_{\geq 0}$	$f_6:\mathbb{R}\setminus\{$			
x	\mapsto	x^2		x	\mapsto	$\frac{1}{x^2}$

Also determine the image of each function.

- (b) Find a function $f : \mathbb{N} \to \mathbb{N}$ which is
 - (i) injective but not surjective,
 - (ii) surjective but not injective.

SOLUTION:

(a)

	f_1	f_2	f_3	f_4	f_5	f_6
injective	—	×	×	×	×	_
surjective	_	_	×	×	_	×
bijective	-	_	×	×	_	-

$\operatorname{im} f_1 = f_1(\mathbb{R}) = \mathbb{R}_{\geq 0}$	$\operatorname{im} f_4 = f_4(\mathbb{R}) = \mathbb{R}$
$\operatorname{im} f_2 = f_2(\mathbb{R}_{\ge 0}) = \mathbb{R}_{\ge 0}$	$\operatorname{im} f_5 = f_5(\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\}$
$\operatorname{im} f_3 = f_3(\mathbb{R}_{\ge 0}) = \mathbb{R}_{\ge 0}$	$\operatorname{im} f_6 = f_6(\mathbb{R} \setminus \{0\}) = \mathbb{R}_{>0}$

 $\begin{aligned} \text{(b)} \quad & (\text{i)} \ f: \mathbb{N} \to \mathbb{N}, x \mapsto x+1 \\ & (\text{ii)} \ f: \mathbb{N} \to \mathbb{N}, 1 \mapsto 1, x \mapsto x-1 \text{ for } x > 1. \end{aligned}$

G15 (Composition of Functions)

(a) Find functions f and g such that the following functions can be written as $f \circ g$.

$$F_1(x) = \sqrt{x+9} \qquad F_3(x) = \sqrt{x}+2 F_2(x) = (x-5)^2 \qquad F_4(x) = \frac{1}{x-1}$$

- (b) Consider the functions f and g from \mathbb{R} to \mathbb{R} given by $f(x) = x^2$ and g(x) = x 3. Find the composite functions $f \circ f$, $f \circ g$, $g \circ f$ and $g \circ g$ and determine the domain of each function. Demonstrate that $f \circ g$ is not necessarily the same as $g \circ f$.
- (c) Find $f \circ g \circ h$ where f(x) = x/(x+1), $g(x) = x^2$ and h(x) = x+3. Find the maximal subset of \mathbb{R} on which $f \circ g \circ h$ is defined.

SOLUTION:

- (a) (i) $f(x) = \sqrt{x}, g(x) = x + 9.$ (ii) $f(x) = x^2, g(x) = x - 5.$ (iii) $f(x) = x + 2, g(x) = \sqrt{x}.$ (iv) $f(x) = \frac{1}{x}, g(x) = x - 1.$
- (b) $(f \circ f)(x) = x^4$. The domain of $f \circ f$ is \mathbb{R} . $(g \circ f)(x) = x^2 - 3$. The domain of $g \circ f$ is \mathbb{R} . $(f \circ g)(x) = (x - 3)^2$. The domain of $f \circ g$ is \mathbb{R} . $(g \circ g)(x) = x - 6$. The domain of $g \circ g$ is \mathbb{R} .

(c)

$$(f \circ g \circ h)(x) = \frac{(x+3)^2}{(x+3)^2+1}.$$

G16 (Preimages)

Determine the set

$$\{x \in \mathbb{R} \mid f(x) = 1\},\$$

with

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^3 - x^2 - 4x + 5 \end{array}$$

Solution: Determine the solutions of $x^3 - x^2 - 4x + 5 = 1$.

$$\{x \in \mathbb{R} : f(x) = 1\} = \{1, 2, -2\}.$$

G17 (Zeroes)

Find all zeroes of the following functions:

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3 - 6x^2 + 11x - 6$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^4 - 4x^3 + 6x^2 - 4x + 1$$

$$h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^4 - 1$$

G18 (Bonus Exercise: Injectivity, Surjectivity, Bijectivity II) Let $f : X \to X$ be a function. Prove that f is

(a) injective,

(b) surjective,

(c) bijective

if and only if $f \circ f$ is.

SOLUTION: We did this in the lecture.