Introductory Course Mathematics

Exercise Sheet 4 with hints

G14 (Injectivity, Surjectivity, Bijectivity I)

(a) Which of the following functions are injective, surjective, bijective?

$$
\begin{aligned}
f_{1}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} \\
f_{2}: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} \\
f_{3}: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto x^{2}
\end{aligned}
$$

$$
\begin{aligned}
f_{4}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{3} \\
f_{5}: \mathbb{R} \backslash\{0\} & \rightarrow \mathbb{R} \\
x & \mapsto \frac{1}{x} \\
f_{6}: \mathbb{R} \backslash\{0\} & \rightarrow \mathbb{R}_{>0} \\
x & \mapsto \frac{1}{x^{2}}
\end{aligned}
$$

Also determine the image of each function.
(b) Find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is
(i) injective but not surjective,
(ii) surjective but not injective.

Solution:
(a)

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
injective	-	\times	\times	\times	\times	-
surjective	-	-	\times	\times	-	\times
bijective	-	-	\times	\times	-	-

$$
\begin{array}{ll}
\operatorname{im} f_{1}=f_{1}(\mathbb{R})=\mathbb{R}_{\geq 0} & \operatorname{im} f_{4}=f_{4}(\mathbb{R})=\mathbb{R} \\
\left.\operatorname{im} f_{2}=f_{2} \mathbb{R}_{\geq 0}\right)=\mathbb{R}_{\geq 0} & \operatorname{im} f_{5}=f_{5}(\mathbb{R} \backslash\{0\})=\mathbb{R} \backslash\{0\} \\
\operatorname{im} f_{3}=f_{3}\left(\mathbb{R}_{\geq 0}\right)=\mathbb{R}_{\geq 0} & \operatorname{im} f_{6}=f_{6}(\mathbb{R} \backslash\{0\})=\mathbb{R}_{>0}
\end{array}
$$

(b) (i) $f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto x+1$
(ii) $f: \mathbb{N} \rightarrow \mathbb{N}, 1 \mapsto 1, x \mapsto x-1$ for $x>1$.

G15 (Composition of Functions)

(a) Find functions f and g such that the following functions can be written as $f \circ g$.

$$
\begin{array}{ll}
F_{1}(x)=\sqrt{x+9} & F_{3}(x)=\sqrt{x}+2 \\
F_{2}(x)=(x-5)^{2} & F_{4}(x)=\frac{1}{x-1}
\end{array}
$$

(b) Consider the functions f and g from \mathbb{R} to \mathbb{R} given by $f(x)=x^{2}$ and $g(x)=x-3$. Find the composite functions $f \circ f, f \circ g, g \circ f$ and $g \circ g$ and determine the domain of each function. Demonstrate that $f \circ g$ is not necessarily the same as $g \circ f$.
(c) Find $f \circ g \circ h$ where $f(x)=x /(x+1), g(x)=x^{2}$ and $h(x)=x+3$. Find the maximal subset of \mathbb{R} on which $f \circ g \circ h$ is defined.

Solution:

(a) (i) $f(x)=\sqrt{x}, g(x)=x+9$.
(ii) $f(x)=x^{2}, g(x)=x-5$.
(iii) $f(x)=x+2, g(x)=\sqrt{x}$.
(iv) $f(x)=\frac{1}{x}, g(x)=x-1$.
(b) $(f \circ f)(x)=x^{4}$. The domain of $f \circ f$ is \mathbb{R}.
$(g \circ f)(x)=x^{2}-3$. The domain of $g \circ f$ is \mathbb{R}.
$(f \circ g)(x)=(x-3)^{2}$. The domain of $f \circ g$ is \mathbb{R}.
$(g \circ g)(x)=x-6$. The domain of $g \circ g$ is \mathbb{R}.
(c)

$$
(f \circ g \circ h)(x)=\frac{(x+3)^{2}}{(x+3)^{2}+1} .
$$

G16 (Preimages)

Determine the set

$$
\{x \in \mathbb{R} \mid f(x)=1\}
$$

with

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{3}-x^{2}-4 x+5
\end{aligned}
$$

SOLUTION: Determine the solutions of $x^{3}-x^{2}-4 x+5=1$.

$$
\{x \in \mathbb{R}: f(x)=1\}=\{1,2,-2\} .
$$

G17 (Zeroes)

Find all zeroes of the following functions:

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{3}-6 x^{2}+11 x-6 \\
g: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{4}-4 x^{3}+6 x^{2}-4 x+1 \\
h: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{4}-1
\end{aligned}
$$

G18 (Bonus Exercise: Injectivity, Surjectivity, Bijectivity II) Let $f: X \rightarrow X$ be a function. Prove that f is
(a) injective,
(b) surjective,
(c) bijective
if and only if $f \circ f$ is.
Solution: We did this in the lecture.

