Introductory Course Mathematics
 Exercise Sheet 3 with hints

G7 (Proof by Contradiction)

Consider (again) the proposition $(A \Rightarrow B) \Leftrightarrow(A \wedge \neg B \Rightarrow f)$ and explain why this justifies proofs by contradiction.

Solution: The equivalence of the propositions $(A \Rightarrow B)$ and $(A \wedge \neg B \Rightarrow \mathbf{f})$ means that instead of proving the first proposition, we can prove the second proposition.

For proving the second proposition we assume that A is true and B is false. From this we need to derive a wrong conclusion. This is exactly the technique of the proof by contradiction.

G8 (Direct Proof)

Show by a direct proof that for all $a, b \in \mathbb{R}$ the equation $a+\frac{1}{a}=b$ implies $a^{3}+\frac{1}{a^{3}}=b^{3}-3 b$.
Solution: We compute

$$
b^{3}=\left(a+\frac{1}{a}\right)^{3}=a^{3}+\frac{1}{a^{3}}+3\left(a+\frac{1}{a}\right)=a^{3}+\frac{1}{a^{3}}+3 b .
$$

The statement follows.

G9 (Contraposition)

Show by proving the contraposition: For all $x \in \mathbb{R}$ we have that $x>0$ implies the inequality $\frac{3 x-4}{2 x+4}>-1$.

Solution: We show that $\frac{3 x-4}{2 x+4} \leq-1$ implies $x \leq 0$:

$$
\frac{3 x-4}{2 x+4} \leq-1 \quad \Rightarrow \quad 3 x-4 \leq-2 x-4 \quad \Rightarrow \quad 5 x \leq 0 \quad \Rightarrow \quad x \leq 0 .
$$

(Note that the first implication is not an equivalence since x might be -2 in the second inequality but not in the first.)

G10 (Irrationality of $\sqrt{2}$)

Analyse the proof that $\sqrt{2}$ is not a rational number. Why is this a proof by contradiction and not a proof by contraposition?

Solution: The proof assumes that there is a rational number q such that $q^{2}=2$. The fact that q is a rational number is also used in the proof. At the end of the proof we do not conclude that q is not rational but we reach the false conclusion that the numerator and the denominator of q have a common factor.

Therefore it is a proof by contradiction and not the proof of the contraposition.

G11 (Induction)

Prove by induction that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution: Induction start: For $n=1$ we get

$$
\sum_{k=1}^{1} k^{2}=1^{2}=1=\frac{1(1+2)(2 \cdot 1+1)}{6} .
$$

Induction step: Assume we know that the claim holds for some value of n, i.e.,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=1}^{n} k^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} .
\end{aligned}
$$

G12

(a) Let n be a natural number. Show that n^{2} is even if and only if n is even.
(b) Show that $x^{2}=6$ does not have a rational solution.
(c) Show that $1+\sqrt{2}$ is not a rational number. Show that $a+b \sqrt{2}$ is not rational for rational numbers a and b with $b \neq 0$.
(d) Show that $x^{3}=2$ does not have a rational solution.

Solution

(a) If n is even, it is divisible by 2 . Then n^{2} is also divisible by 2 .

If n is odd, it is of the form $2 k-1$ for a natural number k. Then $n^{2}=4 k^{2}-4 k+1=$ $2\left(2 k^{2}-2 k\right)+1$ is obviously odd.
(b) We follow the proof that $x^{2}=2$ does not have a rational solution. Set $x=\frac{a}{b}$ with a and b having no common factor. The key observation is that the equation $a^{2}=6 b^{2}$ implies that a is even. Then we get $a=4 c$ for some c and $2 c^{2}=3 b^{2}$. This equation implies that b is even which is a contradiction.
(c) If $a=0$, then we have to consider $r=b \sqrt{2}$. If r is rational, then $\sqrt{2}=\frac{r}{b}$ is also rational.

Assume $a \neq 0$. Then $r=(a+b \sqrt{2})^{2}=a^{2}+2 a b \sqrt{2}+2 b^{2}$ and $\sqrt{2}=\frac{r-a^{2}-2 b^{2}}{2 a b}$. If r is rational, then $\sqrt{2}$ is also rational.
(d) Use the proof that shows that $x^{2}=2$ does not have a rational solution.

G13 (Bonus Exercise: What is wrong?)

Assume the following equation for a complex number x :

$$
x^{2}+x+1=0 .
$$

Then

$$
x^{2}=-1-x .
$$

If we assume that $x \neq 0$, we can divide by x, which yields

$$
x=-\frac{1}{x}-1 .
$$

Substituting this expression for x in the original equation leads to

$$
\begin{aligned}
x^{2}+\left(-\frac{1}{x}-1\right)+1 & =0 \\
x^{2}-\frac{1}{x} & =0 \\
x^{2} & =\frac{1}{x} \\
x^{3} & =1 \\
x & =1 .
\end{aligned}
$$

Substituting $x=1$ in the original equation yields

$$
3=0 .
$$

Solution: The equation $z^{3}=1$ has three solutions over \mathbb{C}. The other two solutions are $-\frac{1}{2} \pm \sqrt{\frac{3}{4}}$, which are also solutions for $x^{2}+x+1=0$.
The wrong solution $z=1$ is introduced by substituting $x=-\frac{1}{x}-1$ into the original equation. (This step increases the degree of the equation by 1 and hence adds a new solution.)

