Introductory Course Mathematics

Exercise Sheet 2 with hints

G4 (Complex Numbers)

(a) Verify that the inversion formula

$$
(a+b i)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
$$

is correct.
(b) Compute $\frac{5-3 i}{3+2 i}$.
(c) Try to find the solution of $(2-i) \cdot(2-2 i)$ geometrically.
(d) Let $c=a+b i$ be a complex number. Compute $(x-c)(x-\bar{c})$. Can you guess a solution for $x^{2}-2 x+2=0$?

Solution:

(a)

$$
\begin{aligned}
(a+b i)(a+b i)^{-1} & =(a+b i) \cdot\left(\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i\right) \\
& =a \frac{a}{a^{2}+b^{2}}+a \frac{-b}{a^{2}+b^{2}} i+b i \frac{a}{a^{2}+b^{2}}+b \frac{-b}{a^{2}+b^{2}} i^{2} \\
& =\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}=1
\end{aligned}
$$

(b)

$$
\frac{5-3 i}{3+2 i}=(5-3 i)(3+2 i)^{-1}=(5-3 i) \frac{3-2 i}{3^{2}+2^{2}}=\frac{9-19 i}{13} .
$$

(c) We see that $2-2 i$ encloses an angle of 45° with the real line. So multiplying with $2-2 i$ is a rotation about 45° clockwise and a dilation of $2-2 i=\sqrt{8} \approx 2.8$. So we get:

(d)

$$
(x-c)(x-\bar{c})=x^{2}-(c+\bar{c}) x+c \bar{c}=x^{2}-2 a x+\left(a^{2}+b^{2}\right)
$$

If $a=b=1$ this turns into $x^{2}-2 x+2$ which hence has the solutions $1+i$ and $1-i$.

G5 (Truth Tables)

Let A and B be propositions. Show that the following statments are true by setting up truth tables in each case:
(a) A is the same as $\neg(\neg A)$.
(b) $\neg(A \wedge B)$ is the same as $\neg A \vee \neg B$.
(c) $\neg(A \vee B)$ is the same as $\neg A \wedge \neg B$.
(d) $A \Rightarrow B$ is the same as $\neg A \vee B$.

Solution: The truth tables are:
(a)

$$
\begin{array}{c|c|c}
A & \neg A & \neg(\neg A) \\
\hline t & f & t \\
f & t & f
\end{array}
$$

(b)

A	B	$A \wedge B$	$\neg(A \wedge B)$	$\neg A$	$\neg B$	$\neg A \vee \neg B$
t	t	t	f	f	f	f
t	f	f	t	f	t	t
f	t	f	t	t	f	t
f	f	f	t	t	t	t

(c)

A	B	$A \vee B$	$\neg(A \vee B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
t	t	t	f	f	f	f
t	f	t	f	f	t	f
f	t	t	f	t	f	f
f	f	f	t	t	t	t

(d)

A	B	$A \Rightarrow B$	B	$\neg A$	$\neg A \vee B$
t	t	t	t	f	t
t	f	f	f	f	f
f	t	t	t	t	t
f	f	t	f	t	t

G6 (Propositions and Quantifiers)

(a) Show: For propositions A and B we have that $A \wedge(A \Rightarrow B)$ implies B. Interpret this rule.
(b) Find examples of implications that are not equivalences and explain why the conclusion works in one direction only.
(c) Prove the proposition

$$
(A \Longrightarrow B) \Longleftrightarrow(\neg B \Longrightarrow \neg A)
$$

(d) Negate the following propositions:
(i) All mathematicians are smokers.
(ii) No student likes to go to parties.
(iii) All bananas are yellow.
(iv) There exists a black swan.
(e) Negate the following propositions:
(i) $\exists x \in S: A(x) \wedge B(x)$
(ii) $\forall x \in S: A(x) \Rightarrow B(x)$
(f) Write the following propositions as a formal expression using quantifiers, negate the formal expression and convert the negation back into everyday language.
(i) For every real number x there exists a natural number n such that $n>x$.
(ii) There is no rational number x satisfying the equation $x^{2}=0$.

Solution:

(a) Set up a truth table.

The implication $A \Rightarrow B$ says that B is true provided A is also true. It does not say anything about the truth of A and therefore, we do not know if B is true or not.
If we know in addition that A is true, then it follows that B is also true.
(b) If x is a positive real number, then x^{2} is also positive.

If the integer n is divisible by 6 , then n is divisible by 3 .
If it is midnight in Darmstadt, the sun does not shine.
(c) The truth table looks as follows:

A	B	$A \Rightarrow B$	$\neg B$	$\neg A$	$\neg B \Longrightarrow \neg A$
t	t	t	f	f	t
t	f	f	t	f	f
f	t	t	f	t	t
f	f	t	t	t	t

(d) (i) There is a mathematician who is not a smoker.
(ii) There is a student who likes to go to parties.
(iii) There is a banana that is not yellow.
(iv) All swans are not black.
(e) \quad (i) $\forall x \in S: \neg A(x) \vee \neg B(x)$
(ii) $\exists x \in S: A(x) \wedge \neg B(x)$
(f) (i) $\forall x \in \mathbb{R} \exists n \in \mathbb{N}: n>x$

Negation: $\exists x \in \mathbb{R} \forall n \in \mathbb{N}: n \leq x$
There is an x in \mathbb{R} such that x is larger than or equal to n for all $n \in \mathbb{N}$.
(ii) $\neg\left(\exists q \in \mathbb{Q}: q^{2}=0\right)$, which is the same as $\forall q \in \mathbb{Q}: q^{2} \neq 0$.

Negation: $\exists q \in \mathbb{Q}: q^{2}=0$
There is a rational number x satisfying the equation $x^{2}=0$.

