

Introductory Course Mathematics Exercise Sheet 2 with hints

G4 (Complex Numbers)

(a) Verify that the inversion formula

$$(a+bi)^{-1} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

is correct.

- (b) Compute $\frac{5-3i}{3+2i}$.
- (c) Try to find the solution of $(2-i) \cdot (2-2i)$ geometrically.
- (d) Let c = a + bi be a complex number. Compute $(x c)(x \bar{c})$. Can you guess a solution for $x^2 2x + 2 = 0$?

SOLUTION:

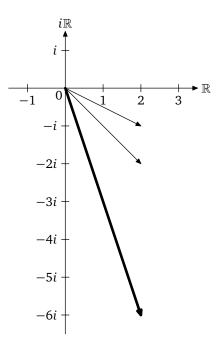
(a)

$$(a+bi)(a+bi)^{-1} = (a+bi) \cdot \left(\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i\right)$$
$$= a\frac{a}{a^2+b^2} + a\frac{-b}{a^2+b^2}i + bi\frac{a}{a^2+b^2} + b\frac{-b}{a^2+b^2}i^2$$
$$= \frac{a^2}{a^2+b^2} + \frac{b^2}{a^2+b^2} = 1$$

(b)

$$\frac{5-3i}{3+2i} = (5-3i)(3+2i)^{-1} = (5-3i)\frac{3-2i}{3^2+2^2} = \frac{9-19i}{13}$$

(c) We see that 2 - 2i encloses an angle of 45° with the real line. So multiplying with 2 - 2i is a rotation about 45° clockwise and a dilation of $2 - 2i = \sqrt{8} \approx 2.8$. So we get:



$$(x-c)(x-\bar{c}) = x^2 - (c+\bar{c})x + c\bar{c} = x^2 - 2ax + (a^2 + b^2).$$

If a = b = 1 this turns into $x^2 - 2x + 2$ which hence has the solutions 1 + i and 1 - i.

G5 (Truth Tables)

Let A and B be propositions. Show that the following statements are true by setting up truth tables in each case:

- (a) A is the same as $\neg(\neg A)$.
- (b) $\neg (A \land B)$ is the same as $\neg A \lor \neg B$.
- (c) $\neg (A \lor B)$ is the same as $\neg A \land \neg B$.
- (d) $A \Rightarrow B$ is the same as $\neg A \lor B$.

SOLUTION: The truth tables are:

(a)

(b)

(~)							
	A	B	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$	$\neg A \vee \neg B$
	t	t	t	f	f	f	f
	t	f	f	t	f	t	t
	f	t	f	$egin{array}{c}t\\t\\t\end{array}$	t	$\int f$	t
	f	$\int f$	f	t	t	t	t
(c)							
	A	B	$A \lor B$	$\neg(A \lor B)$	$\neg A$	$\neg B$	$\neg A \land \neg B$
	t	t	t	f	f	f	f
	t	f	t	f	f	$\begin{array}{c} t\\ f\end{array}$	f
	f	t	t	$\begin{array}{c}f\\f\\t\end{array}$	t	$\int f$	
	f	f	f	t	$\mid t$	$\begin{bmatrix} t \\ t \end{bmatrix}$	t

(d)

A	B	$A \Rightarrow B$	B	$\neg A$	$\neg A \lor B$
t	t	t	t	f	t
t	f	f	f	f	f
f	t	t	t	t	t
f	f	t	f	t	t

G6 (Propositions and Quantifiers)

- (a) Show: For propositions A and B we have that $A \wedge (A \Rightarrow B)$ implies B. Interpret this rule.
- (b) Find examples of implications that are not equivalences and explain why the conclusion works in one direction only.
- (c) Prove the proposition

$$(A \implies B) \Longleftrightarrow (\neg B \implies \neg A)$$

- (d) Negate the following propositions:
 - (i) All mathematicians are smokers.
 - (ii) No student likes to go to parties.
 - (iii) All bananas are yellow.
 - (iv) There exists a black swan.
- (e) Negate the following propositions:
 - (i) $\exists x \in S : A(x) \land B(x)$
 - (ii) $\forall x \in S : A(x) \Rightarrow B(x)$
- (f) Write the following propositions as a formal expression using quantifiers, negate the formal expression and convert the negation back into everyday language.
 - (i) For every real number x there exists a natural number n such that n > x.
 - (ii) There is no rational number x satisfying the equation $x^2 = 0$.

SOLUTION:

(a) Set up a truth table.

The implication $A \Rightarrow B$ says that B is true provided A is also true. It does not say anything about the truth of A and therefore, we do not know if B is true or not.

If we know in addition that A is true, then it follows that B is also true.

- (b) If x is a positive real number, then x^2 is also positive. If the integer n is divisible by 6, then n is divisible by 3. If it is midnight in Darmstadt, the sun does not shine.
- (c) The truth table looks as follows:

A	B	$A \Rightarrow B$	$\neg B$	$\neg A$	$\neg B \implies \neg A$
t	t	t	f	f	t
t	f	f	t	f	f
f	t	t	f	t	t
f	f	t	t	t	t

(d) (i) There is a mathematician who is not a smoker.

- (ii) There is a student who likes to go to parties.
- (iii) There is a banana that is not yellow.
- (iv) All swans are not black.
- (e) (i) $\forall x \in S : \neg A(x) \lor \neg B(x)$
 - (ii) $\exists x \in S : A(x) \land \neg B(x)$
- (f) (i) $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x$ Negation: $\exists x \in \mathbb{R} \ \forall n \in \mathbb{N} : n \le x$ There is an x in \mathbb{R} such that x is larger than or equal to n for all $n \in \mathbb{N}$.
 - (ii) $\neg(\exists q \in \mathbb{Q} : q^2 = 0)$, which is the same as $\forall q \in \mathbb{Q} : q^2 \neq 0$. Negation: $\exists q \in \mathbb{Q} : q^2 = 0$

There is a rational number x satisfying the equation $x^2 = 0$.