Introductory Course Mathematics Exercise Sheet 8

G34 Determine the tangent at x_{0} :
(a) $f(x)=2 x^{3}-7, \quad x_{0}=-1$
(b) $f(x)=\frac{1}{x}, \quad x_{0}=\frac{1}{2}$

G35 Does $\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}\right)-f(x)}{x_{0}-x}$ exist for the following function?

$$
f(x)=\left|x^{3}\right|, \quad x_{0}=0
$$

Use the definition of differentiability to decide whether the function is differentiable in $x_{0}=0$.

G36 Prove from the definition of differentiability:
(a) If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$.
(b) If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$.
(c) If $f(x)=x^{n}$, for $n \in \mathbb{N}$, then $f^{\prime}(x)=n x^{n-1}$.
(d) If $f(x)=\frac{1}{x}$, then $f^{\prime}(x)=-\frac{1}{x^{2}}$.

G37 Write the following function as a composition of simpler functions and calculate their derivatives using the chain rule: $f(x)=\sqrt{\left(2 x^{2}+x\right)^{3}+1}$

G38 Prove using the defintion by power series from Lectures 6 and 7:
(a) If $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$.
(b) If $f(x)=\sin x$ then $f^{\prime}(x)=\cos x$.
(c) If $f(x)=\cos x$ then $f^{\prime}(x)=-\sin x$.

G39 Compute the derivatives of the following functions:
(a) $f_{1}(x)=x^{4}-x^{2}+5 x-7$
(b) $f_{2}(x)=\frac{x^{2}+5}{\sqrt{x^{2}-7 x+1}}$
(c) $f_{3}(x)=x^{2} e^{x^{2}}$
(d) $f_{4}(x)=2^{x}$
(e) $f_{5}(x)=x^{x}$

G40 Show, that $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$.
G41 Use the product rule and the chain rule to prove the quotient rule.
G42 Decompose a fixed real number c into two summands such that their product is maximal.

