Fachbereich Mathematik Dipl.-Math. Silke Möser

Introductory Course Mathematics Exercise Sheet 7

G30 Determine the following limits if they exist.

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 (c) $\lim_{x \to -1} \frac{x^4 - 1}{x + 1}$
(b) $\lim_{x \to -\frac{1}{2}} \frac{4x^2 - 1}{2x + 1}$ (d) $\lim_{x \to a} \frac{x^2 - (a + 1)x + a}{x^3 - a^3}$

G31

- (a) Consider the function $f : \mathbb{R} \to \mathbb{R} : x \mapsto x$. Show that for all $c \in \mathbb{R}$ the limit $\lim_{x \to c} f(x)$ exists and that f is continuous on \mathbb{R} .
- (b) For what values of the real number c is the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} cx+1 & \text{if } x \le 3\\ cx^2 - 1 & \text{if } x > 3 \end{cases}$$

continuous?

G32

- (a) Use the Intermediate Value Theorem to show that there exists a positive number c such that $c^2 = 2$. (This proves the existence of the number $\sqrt{2}$.)
- (b) Show that the following equations have a root in the given interval:
 - (i) $x^3 3x + 1 = 0$ in [0, 1]
 - (ii) $x^5 2x^4 x 3 = 0$ in [2,3]
 - (iii) $x^2 = \sqrt{x+1}$ in [1,2]

G33 Use the definition of continuity to prove Theorem 7.3.1:

Theorem 7.3.1. Let $f, g: U \to \mathbb{R}$ be two continuous functions. Then

- $f \pm g$,
- $f \cdot g$,
- $\frac{f}{g}$, and
- $f \circ g$

are continuous (where they are defined).