Introductory Course Mathematics

Exercise Sheet 7

G30 Determine the following limits if they exist.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(c) $\lim _{x \rightarrow-1} \frac{x^{4}-1}{x+1}$
(b) $\lim _{x \rightarrow-\frac{1}{2}} \frac{4 x^{2}-1}{2 x+1}$
(d) $\lim _{x \rightarrow a} \frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}$

G31
(a) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x$. Show that for all $c \in \mathbb{R}$ the limit $\lim _{x \rightarrow c} f(x)$ exists and that f is continuous on \mathbb{R}.
(b) For what values of the real number c is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}c x+1 & \text { if } x \leq 3 \\ c x^{2}-1 & \text { if } x>3\end{cases}
$$

continuous?
G32
(a) Use the Intermediate Value Theorem to show that there exists a positive number c such that $c^{2}=2$. (This proves the existence of the number $\sqrt{2}$.)
(b) Show that the following equations have a root in the given interval:
(i) $x^{3}-3 x+1=0$ in $[0,1]$
(ii) $x^{5}-2 x^{4}-x-3=0$ in $[2,3]$
(iii) $x^{2}=\sqrt{x+1}$ in $[1,2]$

G33 Use the definition of continuity to prove Theorem 7.3.1:
Theorem 7.3.1. Let $f, g: U \rightarrow \mathbb{R}$ be two continuous functions. Then

- $f \pm g$,
- $f \cdot g$,
- $\frac{f}{g}$, and
- $f \circ g$
are continuous (where they are defined).

