Introductory Course Mathematics

Exercise Sheet 5

G19 (Limits I)

(a) Consider the sequence

$$
a_{n}=\frac{2 n-3}{5 n+7}, \quad n \in \mathbb{N}
$$

(i) Show that the limit of this sequence is $\frac{2}{5}$.
(ii) Which terms of the sequence are closer to $\frac{2}{5}$ than $\varepsilon=\frac{1}{10}$?
(b) (i) What is the limit of the sequence $a_{n}=\frac{1}{2^{n}}$ for $n \in \mathbb{N}$?
(ii) What is the limit of the sequence

$$
\frac{1}{2}, \quad \frac{1}{2}+\frac{1}{4}, \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}, \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots
$$

Can you give a geometric interpretation of this limit process?
(c) The first terms of an infinite sequence are $1,3,7,15,31,63$.
(i) Find a recursive definition for the sequence.
(ii) Find an explicit definition.
(d) Find a recursive definition for the sequence

$$
\sqrt{2}, \quad \sqrt{2 \sqrt{2}}, \quad \sqrt{2 \sqrt{2 \sqrt{2}},} \quad \ldots
$$

What is the limit of this sequence?

G20 (Limits II)

Determine the limit (if it exists) of

$$
\begin{gathered}
a_{n}=\frac{5}{n}+\frac{7 n}{n^{2}+1}, \quad b_{n}=\left(6+\frac{1}{n}\right)\left(\frac{n+2}{2 n+1}-1\right), \quad c_{n}=\frac{2 n^{2}-2}{3 n^{2}-3} \\
d_{n}=\frac{\frac{1}{n^{2}}+\frac{1}{n^{3}}}{\frac{1}{n}+\frac{1}{n^{2}}}, \quad e_{n}=\frac{2 n+(-1)^{n} n}{n+1} .
\end{gathered}
$$

G21 (Limits III)

Determine the limit (if it exists) of
(a) $a_{n}=\sqrt{n^{2}+1}-n, \quad n \in \mathbb{N}$.
(b) $b_{n}=n\left(\sqrt{n^{2}+1}-n\right), \quad n \in \mathbb{N}$.
(c) $c_{n}=n^{2}\left(\sqrt{n^{2}+1}-n\right), \quad n \in \mathbb{N}$.

G22 (The Fibonacci Sequence)

Consider the closed form for the Fibonacci sequence as given in the lecture:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) .
$$

(a) Prove that f_{n} is a natural number for $n=1,2,3$.
(b) Prove that it is a natural number for every $n \in \mathbb{N}$.

