

Introductory Course Mathematics Exercise Sheet 4

G14 (Injectivity, Surjectivity, Bijectivity I)

(a) Which of the following functions are injective, surjective, bijective?

$f_1:\mathbb{R}$	\rightarrow	R	$f_4:$]			
•	\mapsto			x	\mapsto	x^3
J.		ı	$f_5: \mathbb{R} \setminus \{0\}$	n	ζ.	TD
$f_2: \mathbb{R}_{\geq 0}$						
x	\mapsto	x^2		x	\mapsto	$\frac{1}{x}$
f. D		D		~		
$f_3: \mathbb{R}_{\geq 0}$		x^2	$f_6: \mathbb{R} \setminus \{0\}$	}	\rightarrow	$\mathbb{K}_{>0}$
x	\mapsto	x^{-}		x	\mapsto	1
						x^2

Also determine the image of each function.

- (b) Find a function $f : \mathbb{N} \to \mathbb{N}$ which is
 - (i) injective but not surjective,
 - (ii) surjective but not injective.

G15 (Composition of Functions)

(a) Find functions f and g such that the following functions can be written as $f \circ g$.

$$F_1(x) = \sqrt{x+9} \qquad F_3(x) = \sqrt{x}+2 F_2(x) = (x-5)^2 \qquad F_4(x) = \frac{1}{x-1}$$

- (b) Consider the functions f and g from \mathbb{R} to \mathbb{R} given by $f(x) = x^2$ and g(x) = x 3. Find the composite functions $f \circ f$, $f \circ g$, $g \circ f$ and $g \circ g$ and determine the domain of each function. Demonstrate that $f \circ g$ is not necessarily the same as $g \circ f$.
- (c) Find $f \circ g \circ h$ where f(x) = x/(x+1), $g(x) = x^2$ and h(x) = x+3. Find the maximal subset of \mathbb{R} on which $f \circ g \circ h$ is defined.

G16 (Preimages)

Determine the set

$$\{x \in \mathbb{R} \mid f(x) = 1\},\$$

with

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^3 - x^2 - 4x + 5 \end{array}$$

G17 (Zeroes)

Find all zeroes of the following functions:

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3 - 6x^2 + 11x - 6$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^4 - 4x^3 + 6x^2 - 4x + 1$$

$$h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^4 - 1$$

G18 (Bonus Exercise: Injectivity, Surjectivity, Bijectivity II) Let $f : X \to X$ be a function. Prove that f is

- (a) injective,
- (b) surjective,
- (c) bijective

if and only if $f \circ f$ is.