Introductory Course Mathematics

Exercise Sheet 3

G7 (Proof by Contradiction)

Consider (again) the proposition $(A \Rightarrow B) \Leftrightarrow(A \wedge \neg B \Rightarrow f)$ and explain why this justifies proofs by contradiction.

G8 (Direct Proof)

Show by a direct proof that for all $a, b \in \mathbb{R}$ the equation $a+\frac{1}{a}=b$ implies $a^{3}+\frac{1}{a^{3}}=b^{3}-3 b$.

G9 (Contraposition)

Show by proving the contraposition: For all $x \in \mathbb{R}$ we have that $x>0$ implies the inequality $\frac{3 x-4}{2 x+4}>-1$.

G10 (Irrationality of $\sqrt{2}$)

Analyse the proof that $\sqrt{2}$ is not a rational number. Why is this a proof by contradiction and not a proof by contraposition?

G11 (Induction)

Prove by induction that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

G12
(a) Let n be a natural number. Show that n^{2} is even if and only if n is even.
(b) Show that $x^{2}=6$ does not have a rational solution.
(c) Show that $1+\sqrt{2}$ is not a rational number. Show that $a+b \sqrt{2}$ is not rational for rational numbers a and b with $b \neq 0$.
(d) Show that $x^{3}=2$ does not have a rational solution.

G13 (Bonus Exercise: What is wrong?)

Assume the following equation for a complex number x :

$$
x^{2}+x+1=0 .
$$

Then

$$
x^{2}=-1-x .
$$

If we assume that $x \neq 0$, we can divide by x, which yields

$$
x=-\frac{1}{x}-1 .
$$

Substituting this expression for x in the original equation leads to

$$
\begin{aligned}
x^{2}+\left(-\frac{1}{x}-1\right)+1 & =0 \\
x^{2}-\frac{1}{x} & =0 \\
x^{2} & =\frac{1}{x} \\
x^{3} & =1 \\
x & =1 .
\end{aligned}
$$

Substituting $x=1$ in the original equation yields

$$
3=0 .
$$

