Introductory Course Mathematics

Exercise Sheet 2

G4 (Complex Numbers)

(a) Verify that the inversion formula

$$
(a+b i)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
$$

is correct.
(b) Compute $\frac{5-3 i}{3+2 i}$.
(c) Try to find the solution of $(2-i) \cdot(2-2 i)$ geometrically.
(d) Let $c=a+b i$ be a complex number. Compute $(x-c)(x-\bar{c})$. Can you guess a solution for $x^{2}-2 x+2=0$?

G5 (Truth Tables)

Let A and B be propositions. Show that the following statments are true by setting up truth tables in each case:
(a) A is the same as $\neg(\neg A)$.
(b) $\neg(A \wedge B)$ is the same as $\neg A \vee \neg B$.
(c) $\neg(A \vee B)$ is the same as $\neg A \wedge \neg B$.
(d) $A \Rightarrow B$ is the same as $\neg A \vee B$.

G6 (Propositions and Quantifiers)

(a) Show: For propositions A and B we have that $A \wedge(A \Rightarrow B)$ implies B. Interpret this rule.
(b) Find examples of implications that are not equivalences and explain why the conclusion works in one direction only.
(c) Prove the proposition

$$
(A \Longrightarrow B) \Longleftrightarrow(\neg B \Longrightarrow \neg A)
$$

(d) Negate the following propositions:
(i) All mathematicians are smokers.
(ii) No student likes to go to parties.
(iii) All bananas are yellow.
(iv) There exists a black swan.
(e) Negate the following propositions:
(i) $\exists x \in S: A(x) \wedge B(x)$
(ii) $\forall x \in S: A(x) \Rightarrow B(x)$
(f) Write the following propositions as a formal expression using quantifiers, negate the formal expression and convert the negation back into everyday language.
(i) For every real number x there exists a natural number n such that $n>x$.
(ii) There is no rational number x satisfying the equation $x^{2}=0$.

