Lineare Algebra 2 9. Tutorium

Normalformen quadratischer Polynome

Prof. Dr. A. Kollross K. Schwieger, T. Felber Fachbereich Mathematik 15./16. Juni 2010

Aufgabe 1 Quadratische Polynome in mehreren Variablen

Ein quadratisches Polynom auf \mathbb{R}^n ist eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ der Form

$$f(x_1,\ldots,x_n) = \sum_{\substack{i_1,\ldots,i_n \in \{0,1,2\}\\i_1+\cdots+i_n \le 2}} a_{i_1,\ldots,i_n} x_1^{i_1} \ldots x_n^{i_n}$$

mit Koeffizienten $a_{i_1,\dots,i_n} \in \mathbb{R}$. Die Menge aller quadratischen Polynome auf \mathbb{R}^n bezeichnen wir mit $\mathscr{P}_2(\mathbb{R}^n)$. Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt homogen vom Grad $d \in \mathbb{N}$, falls $f(\lambda x) = \lambda^d f(x)$ für alle $x \in \mathbb{R}^n$ gilt.

- a) Machen Sie sich klar, dass $\mathscr{P}_2(\mathbb{R}^n)$ ein linearer Teilraum des Vektorraumes $\mathscr{F}(\mathbb{R}^n,\mathbb{R})$ aller Funktionen $f:\mathbb{R}^n\to\mathbb{R}$ ist
- b) Sei $d \in \mathbb{N}$. Zeigen Sie, dass die Menge aller homogenen Funktionen vom Grad d ein linearer Teilraum vom $\mathscr{F}(\mathbb{R}^n,\mathbb{R})$ ist.
- c) Finden Sie eine Basis von $\mathscr{P}_2(\mathbb{R}^3)$. Finden Sie eine Basis des Teilraums aller quadratischen Polynome, die homogen vom Grad 2 sind.
- d) Zeigen Sie allgemein: Die quadratischen Formen auf \mathbb{R}^n sind genau die quadratischen Polynome in $\mathscr{P}_2(\mathbb{R}^n)$, die homogen vom Grad 2 sind.

Aufgabe 2 Orthogonale Äquivalenz

Für eine orthogonale Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ definieren wir

$$\rho(\varphi): \mathscr{P}_2(\mathbb{R}^n) \to \mathscr{P}_2(\mathbb{R}^n), \quad \rho(\varphi)(f) := f \circ \varphi^{-1}.$$

a) Zeigen Sie, dass $\rho(\varphi)$ eine wohldefinierte, lineare Abbildung ist und dass $\rho: O_n(\mathbb{R}^n) \to \operatorname{Aut}(\mathscr{P}_2(\mathbb{R}^n))$ eine Darstellung der Gruppe $O_n(\mathbb{R})$ der orthogonalen Abbildungen auf \mathbb{R}^n ist.

Wir nennen zwei quadratische Polynome $f,g \in \mathscr{P}_2(\mathbb{R}^n)$ orthogonal äquivalent, falls es eine orthogonale Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ mit $f = \rho(\varphi)(g)$ gibt.

- b) Zeigen Sie, dass die so definierte Relation auf $\mathscr{P}(\mathbb{R}^n)$ eine Äquivalenzrelation ist.
- c) Finden Sie zwei quadratische Polynome $f, g \in \mathscr{P}_2(\mathbb{R}^2)$, die nicht orthogonal äquivalent sind.
- d) Zeigen Sie, dass die folgenden polynomialen Funktionen orthogonal äquivalent sind:

$$f(x,y) := x^2 - y^2$$
, $g(x,y) := y^2 - x^2$, $h(x,y) := 2xy$.

e) Zeigen Sie, dass jedes quadratische Polynom, das homogen vom Grad 2 ist, orthogonal äquivalent zu einem Polynom *f* der Form

$$f(x_1,\ldots,x_n) = \lambda_1 x_1^2 + \cdots + \lambda_n x_1^2$$

mit $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ ist.

Aufgabe 3 Wiederholung: Affine Abbildungen

Die folgenden Aufgabe dient der Wiederholung elementarer Eigenschaften affiner Teilräume und Abbildungen. Ggf. können Sie diese Aufgabe auch überspringen.

Zur Erinnerung: Sei V ein Vektorraum. Eine Teilmenge der Form a+U mit einem Vektor $a \in V$ und einem Untervektorraum $U \subseteq V$ heißt *affiner Teilraum*. Eine Funktion $\psi: V \to V$ heißt *affine Abbildung*, falls sie von der Form $\psi(x) = \varphi(x) + a$ mit einer linearen Abbildung $\varphi: V \to V$ und einem festen Vektor $a \in V$ ist.

- a) Zeigen Sie, dass zwei affine Teilräume $a_1 + U_1$ und $a_2 + U_2$ genau dann gleich sind, wenn $U_1 = U_2$ und $a_1 a_2 \in U_1$ gilt.
- b) Sei $\psi: V \to V$ eine affine Abbildung. Zeigen Sie, dass für jeden affinen Teilraum $W \subseteq V$ auch das Bild $\psi(W)$ ein affiner Teilraum ist.
- c) Zeigen Sie, dass für zwei affine Abbildungen $\psi_1, \psi_2 : V \to V$ auch die Komposition $\psi_1 \circ \psi_2$ wieder eine affine Abbildung ist.

Aufgabe 4 Die Gruppe der Affinitäten

- a) Sei $\psi: V \to V$, $\psi(x) = \varphi(x) + a$ eine affine Abbildung mit einer linearen Abbildung $\varphi: V \to V$ und $a \in V$. Zeigen Sie, dass ψ genau dann bijektiv ist, wenn φ bijektiv ist. Bestimmen Sie die Umkehrabbildung ψ^{-1} und zeigen Sie, dass ψ^{-1} wieder eine affine Abbildung ist.
 - Eine bijektive, affine Abbildung heißt auch Affinität. Folgern Sie, dass die Menge Aff(V) aller Affinitäten eine Gruppe bildet.
- b) Welche Untergruppen von Aff(\mathbb{R}^n) kennen Sie?

Aufgabe 5 Affine Äquivalenz

Für eine Affinität $\psi:\mathbb{R}^n \to \mathbb{R}^n$ definieren wir

$$\rho(\psi): \mathscr{P}_2(\mathbb{R}^n) \to \mathscr{P}_2(\mathbb{R}^n), \quad \rho(\psi)(f) := f \circ \psi^{-1}.$$

a) Zeigen Sie, das $\rho(\psi)$ eine wohldefinierte, linear Abbildung ist und dass $\rho: \mathrm{Aff}(\mathbb{R}^n) \to \mathrm{Aut}(\mathscr{P}_2(\mathbb{R}^n))$ eine Darstellung der Gruppe der Affinitäten auf \mathbb{R}^n ist.

Wir nennen zwei quadratische Polynome $f, g \in \mathscr{P}_2(\mathbb{R}^n)$ affin äquivalent, falls es eine Affinität $\psi \in \mathrm{Aff}(\mathbb{R}^n)$ mit $f = \rho(\psi)(g)$ gibt.

- b) Zeigen Sie, dass die so definierte Relation auf $\mathscr{P}_2(\mathbb{R}^n)$ eine Äquivalenzrelation ist.
- c) Zeigen Sie, dass alle orthogoanl äquivalenten Polynome auch affin äquivalent sind.
- d) Finden Sie zwei quadratische Polynome $f, g \in \mathcal{P}_2(\mathbb{R}^2)$, die nicht affin äquivalent sind.
- e) Nutzen Sie quadratische Ergänzung, um zu zeigen, dass jedes quadratisches Polynom $f \in \mathscr{P}_2(\mathbb{R}^n)$ affine äquivalent zu einem Polynom \tilde{f} der Form

$$\tilde{f}(x_1, \dots, x_n) = \sum_{i=1}^{n_1} x_i^2 - \sum_{i=n+1}^{n_2} x_i^2 + \sum_{i=n+1}^{n_3} x_i$$

mit $0 \le n_1 \le n_2 \le n_3 \le n$ oder

$$\tilde{f}(x_1, \dots, x_n) = \sum_{i=1}^{n_1} x_i^2 - \sum_{i=-n_1+1}^{n_2} x_i^2 + c$$

 $mit \ 0 \le n_1 \le n_2 \le n \ und \ c \in \mathbb{R}.$

Hinweis: Versuchen Sie sich ggf. zuerst das Verfahren an ein paar Beispielen klar zu machen.