Lineare Algebra 2 4. Tutorium

Prof. Dr. A. Kollross

K. Schwieger, T. Felber

Fachbereich Mathematik

11. Mai 2010

Zur Bearbeitung

Es wird nicht erwartet, dass Sie alle Aufgaben dieses Tutoriums lösen. Bearbeiten Sie die Aufgaben am besten nach ihrer Reihenfolge.

Definition der Norm

Zur Erinnerung:

Sei V ein Vektorraum über dem Körper \mathbb{K} der reellen oder komplexen Zahlen. Eine Norm $||\cdot||$ ist eine Abbildung $||\cdot||:V\to [0,\infty)$ mit den folgenden Eigenschaften:

a) $\forall x \in V : ||x|| = 0 \iff x = 0$

(Definitheit)

b) $\forall \lambda \in \mathbb{K} \ \forall x \in V : ||\lambda \cdot x|| = |\lambda| \cdot ||x||$

(Homogenität)

c) $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$

(Dreiecksungleichung)

Aufgabe 1 Äquivalenz von Normen

Es sei $\|\cdot\|_p : \mathbb{R}^n \to \mathbb{R}$ die durch $\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ gegebene **p-Norm**. Für $p = \infty$ setzt man $\|x\|_\infty = \max_{1 \le i \le n} \{|x_i|\}$.

- a) Zeigen Sie, dass $||\cdot||_p$ für $p=1,2,\infty$ eine Norm ist.
- b) Mit $E_1 := \{x \in K^n \mid ||x|| \le 1\}$ bezeichnet man die **Einheitskugel** (bezüglich der Norm $||\cdot||$). Skizzieren Sie für n = 2 die Einheitskugeln bezüglich der 1-Norm, der 2-Norm und der Norm $||\cdot||_{\infty}$.
- c) Beweisen Sie, dass die obigen drei Normen äquivalent sind.

Bemerkung: Zwei Normen $||\cdot||_a$ und $||\cdot||_b$ heißen äquivalent, wenn es positive Konstanten c_1 und c_2 gibt mit

$$|c_1||x||_b \le ||x||_a \le |c_2||x||_b$$
 für alle $x \in V$.

Aufgabe 2 Norm und Skalarprodukt

Zeigen Sie, dass für $n \ge 2$ auf dem \mathbb{R}^n durch $||x||_{\infty}$ eine Norm definiert ist, für die kein Skalarprodukt \langle , \rangle auf \mathbb{R}^n existiert mit $||x|| = \sqrt{\langle x, x \rangle}$.

Aufgabe 3 Skalarprodukt und Winkel

a) Zeigen Sie, dass durch $\langle A, B \rangle := \operatorname{tr} (B^T A)$ der Raum $M_n(\mathbb{R})$ mit einem euklidischen Skalarprodukt ausgestattet wird.

Bestimmen Sie den Winkel zwischen der Einheitsmatrix E_2 und der Matrix

$$A := \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right).$$

Bestimmen Sie alle Matrizen, die orthogonal zur Einheitsmatrix sind.

b) Betrachten Sie den reellen Vektorraum $V := \mathscr{P}(\mathbb{R})$ der Polynomfunktionen auf \mathbb{R} . Wer Analysis hört kann auch den reellen Vektorraum $V := \mathscr{C}([0,1])$ aller stetigen Funktionen $f : [0,1] \to \mathbb{R}$ betrachten. Zeigen Sie, dass auf V durch

$$\langle f, g \rangle := \int_0^1 f(x) \cdot g(x) \, dx$$

ein Skalarprodukt auf V definiert ist. Bestimmen Sie den Winkel zwischen den Polynomfunktionen $f(x) := x^3$ und $g(x) := x^4$.

Aufgabe 4

Sei V ein euklidischer Vektorraum. Zeigen Sie, dass

- a) ||u|| = ||v|| dann und nur dann, wenn $\langle u + v, u v \rangle = 0$ gilt;
- b) $||u + v||^2 = ||u||^2 + ||v||^2$ genau dann, wenn $\langle u, v \rangle = 0$ gilt.

Gelten diese Aussagen auch für unitäre Vektorräume?