Syntax und Semantik

Teil 2: FO

Syntax und Semantik

FO₂

Spielsemantik - Semantik-Spiel

Satz:

 $\mathcal{A} \models \psi[\mathbf{a}] \Leftrightarrow \mathbf{V}$ hat Gewinnstrategie in Position (ψ, \mathbf{a}) .

reduziert Auswertung auf Spielanalyse oft mit algorithmisch optimaler Komplexität

Frage: Spiel für φ , das nicht in NNF ist?

das Konzept der Gleichung in der Algebra Robert Recorde

Arzt und früher Popularisierer der "Algebra"

der Erfinder des Gleichheitszeichens!

Teil 2: FO

Syntax und Semantik

FO₂

FO mit oder ohne =?

→ Abschnitt 2.5

FO und FO≠

- Gleichheit ist Bestandteil der *Logik* in FO; anders als interpretierte Relationen $R \in S$.
- natürliche Formalisierungen brauchen oft =, z.B.: Injektivität, algebraische Identitäten, ...
- dennoch möglich: Reduktion von FO auf FO[≠]; Idee: modelliere = durch interpretierte Relation \sim .

$$\hat{S} := S \cup \{\sim\}$$

Verträglichkeitsbedingungen:

 \sim Kongruenzrelation bzgl. aller $R, f \in S$

erhalte Modelle A_0 mit echter Gleichheit als \sim -Quotientien:

$$\mathcal{A}_0 = \mathcal{A}/\sim^{\mathcal{A}} = (A/\sim^{\mathcal{A}}, \dots, [c^{\mathcal{A}}]_{\sim^{\mathcal{A}}}, \dots, f^{\mathcal{A}}/\sim^{\mathcal{A}}, \dots, R^{\mathcal{A}}/\sim^{\mathcal{A}})$$
 ~-Äquivalenzklassen als Elemente

Teil 2: FO

PNF

FO 3.1

Pränexe Normalform

→ Abschnitt 3.1

 $\varphi \in FO(S)$ in pränexer Normalform (PNF):

Beispiele

$$\exists y (Exy \land \forall x (Eyx \to x = y)) \equiv \exists y \forall z (Exy \land (Eyz \to z = y))$$
$$\exists y \forall x Exy \lor \neg \exists y Exy \equiv \exists y_1 \forall y_2 \forall y_3 (Ey_2y_1 \lor \neg Exy_3)$$

Satz über PNF

Jede FO-Formel ist logisch äquivalent zu einer Formel in PNF.

Beweis durch Induktion über $\varphi \in FO(S)$.

Teil 2: FO

Substitution

FO 3.2

Substitution

→ Abschnitt 3.2

das semantisch korrekte Einsetzen von Termen

gesucht: für $t \in T(S)$ und $\varphi(x) \in FO(S)$, $\varphi' := \varphi(t/x) \in FO(S)$ so, dass:

$$\boxed{ \mathfrak{I} \models \varphi' \quad \Leftrightarrow \quad \mathfrak{I}[x \mapsto t^{\mathfrak{I}}] \models \varphi. }$$

Vorsicht! Naives Ersetzen von x durch t tut's nicht!

- beachte, dass x frei und gebunden auftreten kann.
- beachte, dass Variablen in t nicht fälschlich gebunden werden.

Methode

Induktive Definition, die intern gebundene Variablen so umbenennt, dass Konflikte vermieden werden.

Beispiel: $\varphi(x) = \forall y (Exy \land \exists x \neg Exy)$ $\varphi(fy/x) = ?$

GdI II Sommer 2010

M Otto

73/150

Teil 2: FO

Skolemisierung

FO 3.3

Skolemisierung: alles universell?

→ Abschnitt 3.3

universell-pränexe Formeln: $\forall x_{i_1} \dots \forall x_{i_k} \psi$, ψ quantorenfrei

- nicht jede Formel ist logisch äquivalent zu universell-pränexer Formel, z.B. $\varphi = \forall x \exists y \ Exy$
- aber jede Formel ist *erfüllbarkeitsäquivalent* zu universell-pränexer Formel.

Idee: neue Funktionen, die *ggf.* Existenzbeispiele liefern [vgl. ∃-Züge für **V** im Semantik Spiel]

Beispiel

 $\varphi = \forall x \exists y \; \textit{Exy} \quad \longmapsto \quad \varphi' = \forall x \; \textit{Exfx} \qquad \text{(für neues } f\text{)}$

dann gilt:

(i) $\mathcal{A}' = (A, E^{\mathcal{A}}, \dots, f^{\mathcal{A}'}) \models \varphi' \Rightarrow \mathcal{A} = (A, E^{\mathcal{A}}, \dots) \models \varphi$

(ii) $A = (A, E^A, ...) \models \varphi \Rightarrow \text{ es gibt } f^A \text{ über } A, \text{ sodass}$ $A' = (A, E^A, ..., f^{A'}) \models \varphi'$ Teil 2: FO

Skolemisierung

Thoralf Skolem

(1887 - 1963)

Logik, Modelltheorie, Mengenlehre

EGdI II

mmer 2010

M O+

Teil 2: FO

Skolemisierung

FO 3.3

FO 3.3

Skolemnormalform

(Satz 3.6)

Satz über die Skolemnormalform

Jedes $\varphi \in FO$ ist *erfüllbarkeitsäquivalent* zu einer universell-pränexen Formel φ' (in einer erweiterten Signatur).

Man erhält φ' aus einer zu φ logisch äquivalenten Formel in PNF durch Substitution von *Skolemfunktions*termen für existentiell abquantifizierte Variablen.

Zur Erfüllbarkeitsäquivalenz gilt sogar:

- $\varphi' \models \varphi$.
- ullet jedes Modell von φ lässt sich zu Modell von φ' erweitern.

I II Sommer 2010 M Otto 75/150 FGdl II Sommer 2010 M Otto 76/

Teil 2: FO

Herbrand

FO 3.4

Jacques Herbrand

(1908-1931)

Logiker und Algebraiker

Teil 2: FO Herbrand

Satz von Herbrand

(Satz 3.10)

Satz von Herbrand

Sei $\Phi \subseteq FO_0^{\neq}(S)$ Menge von *universellen, gleichheitsfreien* Sätzen; S habe mindestens ein Konstantensymbol.

Dann gilt:

 Φ erfüllbar \Leftrightarrow es existiert ein Herbrand-Modell $\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models \Phi.$

FO 3.4

Beweis

" \Rightarrow ": geeignete Interpretationen $R^{\mathcal{H}}$ aus geg. Modell $\mathcal{A} \models \Phi$.

Teil 2: FO FO 3.4 Herbrand

Satz von Herbrand

→ Abschnitt 3.4

zur Erfüllbarkeit von universellen FO[≠]-Sätzen in Herbrand-Modellen

- *S* enthalte mindestens ein Konstantensymbol
- geg. $\Phi \subseteq \mathrm{FO}_0^{\neq}(S)$: Satzmenge, universell & gleichheitsfrei

Herbrand-Struktur (Erinnerung):

die S_F -Termstruktur $\mathcal{T}_0(S)$ über $\mathcal{T}_0(S)$ (variablenfreie S-Terme)

Herbrand-Modell:

Expansion der Termstruktur $\mathcal{T}_0(S)$ zu S-Struktur,

— durch Interpretation von R (n-st.) als Teilmenge von $T_0(S)^n$ zu einem Modell von Φ

Gleichheitsfreiheit notwendig!

Teil 2: FO SAT(FO)/SAT(AL) FO 3.5

Erfüllbarkeit: Reduktion auf AL → Abschnitt 3.5

Reduktions-Idee: $\Phi \subseteq FO(S)$

(bel. Formelmenge)

erf.-äquiv.

 $\Phi' \subseteq FO_0(S_1)$

(Satzmenge)

erf.-äquiv.

 $\Phi''\subseteq \mathrm{FO}_0^{\neq}(S_2)$

(gleichheitsfrei)

erf.-äquiv.

 $\Phi''' \subseteq FO_0^{\neq}(S_3)$

(universell(-pränex))

 Φ erfüllbar $\Leftrightarrow \Phi'''$ erfüllbar $\Leftrightarrow \Phi'''$ in Herbrand-Modell erfüllbar

und Bedingungen an Herbrand-Modell lassen sich in AL kodieren!

SAT(FO)/SAT(AL)

FO 3.5

Teil 2: FO

FO 3.5

Erfüllbarkeit: Reduktion auf AL

für universell-pränexes $\Phi \subseteq \mathrm{FO}^{\neq}_0(S)$ über S mit Konstanten

 $\begin{array}{ll} \Phi \ \text{erf\"{u}llbar} & \Leftrightarrow & \Phi \ \text{hat ein Herbrand-Modell} \\ \mathcal{H} = \left(\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}\right) \models \Phi \end{array}$

 \Leftrightarrow für alle $R \in S$ (*n*-st.) existieren $R^{\mathcal{H}} \subseteq T_0(S)^n$, sodass $\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models \Phi$

 $\mathcal{V}:=\left\{p_{\alpha}\colon \alpha \text{ relationales Atom "uber } T_0(S) \right\}$ $\alpha=\mathtt{Rt}_1\ldots \mathtt{t}_n; R\in S; t_1,\ldots,t_n\in T_0(S), R\in S \text{ (n-stellig)}$

 $\mathcal{V}\text{-Interpretationen }\mathfrak{I}\text{ beschreiben dann m\"{o}gliche }\mathcal{H}\text{:}$

bijektive Korrepondenz $\mathcal{H} \leftrightarrow \mathfrak{I}$:

$$\begin{array}{ll} \text{von } \mathfrak{I} \text{ zu } \mathcal{H} = \mathcal{H}(\mathfrak{I}) \colon \ R^{\mathcal{H}} = \big\{ (t_1, \ldots, t_n) \in T_0(S)^n \colon \mathfrak{I}(\rho_{\mathtt{Rt}_1 \ldots \mathtt{t}_n}) = 1 \big\} \\ \\ \text{von } \mathcal{H} \text{ zu } \mathfrak{I} = \mathfrak{I}(\mathcal{H}) \colon \ \mathfrak{I} \colon \mathcal{V} & \longrightarrow & \mathbb{B} \\ \\ \rho_{\alpha} & \longmapsto & \left\{ \begin{array}{ll} 1 & \mathsf{falls} \ \mathcal{H} \models \alpha, \\ 0 & \mathsf{falls} \ \mathcal{H} \models \neg \alpha. \end{array} \right. \end{array}$$

dLII Sommer 2010 M.C

31/150

Teil 2: FO

SAT(FO)/SAT(AL)

FO 3.5

Erfüllbarkeit: Reduktion auf AL

Beispiel $\xi(t)^{AL} \in AL(\mathcal{V})$

$$egin{aligned} \xi &= extit{Rxfy} \lor (extit{Ufx}
ightarrow extit{Wxyfz}) \ \mathbf{t} &= (c, fc, d) ext{ für } (x, y, z) \end{aligned} ext{ liefert} \ egin{aligned} \xi(c, fc, d)^{\mathrm{AL}} &= p_{\mathrm{Reffc}} \lor (p_{\mathtt{Ufc}}
ightarrow p_{\mathtt{Wefefd}}) \end{aligned}$$

$$egin{aligned} \xi &= Rxy
ightarrow (Qx \leftrightarrow \neg Qy) \ \mathbf{t} &= (f^nc, f^mc) ext{ für } (x,y) \end{aligned} ext{ liefert} \ egin{aligned} \xi(f^nc, f^mc)^{\mathrm{AL}} &= p_{\mathtt{R}f^nf^mc}
ightarrow (p_{\mathtt{0}f^nc} \leftrightarrow \neg p_{\mathtt{0}f^mc}) \end{aligned}$$

Erfüllbarkeit: Reduktion auf AL

SAT(FO)/SAT(AL)

für $\varphi = \forall x_1 \dots \forall x_n \, \xi(x_1, \dots, x_n) = \forall \mathbf{x} \, \xi(\mathbf{x}), \quad \xi \text{ quantorenfrei }$ und $\mathcal{H} = \mathcal{H}(\mathfrak{I})$ gilt:

 $\mathcal{H} \models \varphi$ gdw. $\mathcal{H} \models \xi[\mathbf{t}]$ für alle $\mathbf{t} = (t_1, \dots, t_n) \in T_0(S)^n$ gdw. $\mathfrak{I} \models \xi(\mathbf{t})^{\mathrm{AL}}$ für alle $\mathbf{t} = (t_1, \dots, t_n) \in T_0(S)^n$

dabei erhält man $\xi(\mathbf{t})^{\mathrm{AL}} \in \mathrm{AL}(\mathcal{V})$ aus $\xi(\mathbf{t})$ durch Ersetzen von Atomen $\alpha = \mathbf{R} \dots$ durch AL-Variablen p_{α}

 $\text{ für } \llbracket \Phi \rrbracket^{\operatorname{AL}} := \bigcup_{\forall \mathbf{x} \xi \;\in\; \Phi} \{ \xi(\mathbf{t})^{\operatorname{AL}} \colon \mathbf{t} \; \text{in} \; T_0(S) \} \; \text{gilt:}$

Φ erfüllbar gdw. **[**Φ**]**^{AL} erfüllbar

FGdl II

Sommer 201

M Otto

Teil 2: FO

SAT(FO)/SAT(AL)

FO 3.5

Beispiel

 $S = \{R, Q, f\}$ R (2-st.), Q (1-st.), Relationssymbole f (1-st.), Funktionssymbol

Behauptung:

 $\Phi: \left\{ \begin{array}{l} \varphi_1 = \forall x \forall y \big(Rxy \to (Qx \leftrightarrow \neg Qy) \big) \\ \varphi_2 = \forall x \big(Rxfx \lor Rfxx \big) \\ \varphi_3 = \forall x \forall y \big(\neg Rxy \to Rxffy \big) \end{array} \right.$

ist unerfüllbar

$$S_c := S \cup \{c\}$$
 $T_0(S_c) = \{c, fc, ffc, fffc, \ldots\} = \{f^n c \colon n \in \mathbb{N}\}$

AL-Variablen für die Reduktion:

 $q_n \quad (=p_{\mathbb{Q}f^nc}) \quad \text{für die Atome } Qf^nc, \quad (n \in \mathbb{N}), \\ r_{\ell,m} \quad (=p_{\mathbb{R}f^\ell cf^mc}) \quad \text{für die Atome } Rf^\ell cf^mc, \quad (\ell, m \in \mathbb{N}).$

wir erhalten z.B. für φ_1 die AL -Formelmenge

 $\llbracket \varphi_1 \rrbracket^{\mathrm{AL}} = \big\{ r_{\ell,m} \to (q_\ell \leftrightarrow \neg q_m) : \ell, m \in \mathbb{N} \big\}$

GdI II Sommer 20

010

to

83/150

mer 2010

M Otto

84/150

FO 4

Beispiel (fortges.)

zugeh. AL-Formelmenegen zu $\varphi_1, \varphi_2, \varphi_3$:

$$\left\{ \begin{array}{l} \llbracket \varphi_1 \rrbracket^{\mathrm{AL}} = \left\{ r_{\ell,m} \to \left(q_{\ell} \leftrightarrow \neg q_m \right) : \ell, m \in \mathbb{N} \right\} \\ \llbracket \varphi_2 \rrbracket^{\mathrm{AL}} = \left\{ r_{\ell,\ell+1} \lor r_{\ell+1,\ell} : \ell \in \mathbb{N} \right\} \\ \llbracket \varphi_3 \rrbracket^{\mathrm{AL}} = \left\{ \neg r_{\ell,m} \to r_{\ell,m+2} : \ell, m \in \mathbb{N} \right\} \end{array} \right.$$

Unerfüllbarkeit von Φ folgt daher z.B. aus AL-Unerfüllbarkeit von

$$egin{aligned} r_{0,0} &
ightarrow \left(q_0 \leftrightarrow \lnot q_0
ight), \ r_{0,1} &
ightarrow \left(q_0 \leftrightarrow \lnot q_1
ight), \ r_{1,0} &
ightarrow \left(q_1 \leftrightarrow \lnot q_0
ight), \ r_{0,2} &
ightarrow \left(q_0 \leftrightarrow \lnot q_2
ight), \ r_{1,2} &
ightarrow \left(q_1 \leftrightarrow \lnot q_2
ight), \ r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,1} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ightarrow \left(q_2 \leftrightarrow \lnot q_1
ight), \ \hline r_{2,2} &
ight$$

Sommer 2010

Teil 2: FO

Kompaktheit

FO 4

FO Kompaktheit

→ Abschnitt 4

Konsequenzen: die Stärken des Endlichkeitssatzes die Schwächen von FO

mit Kompaktheit findet man:

beliebig große endliche Modelle ⇒ unendliche Modelle

zu Φ betrachte $Φ \cup \{\exists x_1 ... \exists x_n \bigwedge_{1 \le i \le n} \neg x_i = x_i : n \ge 1\}$

unendliche Modelle ⇒ beliebig große unendliche Modelle

zu Φ betrachte
$$\Phi \cup \{ \neg c_i = c_j \colon i \neq j; i, j \in I \}$$
 für neue Konstanten $(c_i)_{i \in I}$

⇒ keine unendliche Struktur in FO bis auf Isomorphie charakterisierbar

FO Kompaktheit

Teil 2: FO

(Satz 4.1)

Kompaktheitssatz (Endlichkeitssatz)

Kompaktheit

Version 1: (Erfüllbarkeit)

Für $\Phi \subset FO$ sind äquivalent:

- Φ erfüllbar.
- Jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ ist erfüllbar.

Version 2: (Folgerungsbeziehung)

Für $\Phi \subseteq FO$, $\varphi \in FO$ sind äquivalent:

- (i) $\Phi \models \varphi$.
- (ii) $\Phi_0 \models \varphi$ für eine endliche Teilmenge $\Phi_0 \subseteq \Phi$.

Version $1 \Leftrightarrow \text{Version 2 (zur Übung!)}$

Version 1 für universell-pränexes $\Phi \subseteq FO_0^{\neq}$: Reduktion auf AL

Teil 2: FO

Kompaktheit

FO 4

FO Kompaktheit

Konsequenzen: die Stärken des Endlichkeitssatzes die Schwächen von FO

mit Kompaktheitsargumenten findet man:

Nichtstandardmodelle

von (unendlichen) Standardmodellen in FO ununterscheidbare Strukturen

z.B. \mathcal{N}^* zu $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1, <)$

Nichtstandardmodell der Arithmetik mit 'unendlich großen natürlichen Zahlen

zur vollständigen FO-Theorie von \mathcal{N} , $\Phi := \{ \varphi \in FO : \mathcal{N} \models \varphi \}$

betrachte $\Phi \cup \{\underbrace{1+\cdots+1}_{c} < c \colon n \geqslant 2\}$ für neue Konstante c