8. Problems for CMC Surfaces

Problem 26 - Singularities of the curvature line field:

On the reverse, you find singularities of line fields depicted (from Hopf, Differential geometry in the large, p.109).
a) Assuming these represent a curvature line field of some surface, draw the other curvature line field and convince yourself that it has the same index.
b) Can you imagine an example of a surface with the depicted curvature line field? Consider only the indices admitted by the Loewner conjecture.

Problem 27 - Index of spherical vector fields:

Draw unit vector fields on \mathbb{S}^{2}. It can helps to regard them as the stereographic projection of vector fields on \mathbb{R}^{2} (see back side!).
a) With singularities at north and south pole (recall from class).
b) With only one singularity - what must be its index?
c) With three singularities. (A strategy is to merge singularities.)
d) Can you find similar vector fields on \mathbb{S}^{n} ?

Problem 28 - Index of other spaces:

a) If you happen to know the spaces, calculate the Euler characteristic of a Klein bottle and of $\mathbb{R} P^{2}$.
b) If you know about stereographic projection: Calculate the Euler characteristic from the 4-dimensional cube (also called hypercube) or 4-dimensional tetrahedron.
c) Is there a vector field on \mathbb{S}^{3} without zeros?

Hint: Try to find $X(x)$ in terms of the coordinates of x.

Problem 29 - Index of islands:

a) Consider an island with no lakes. Show that \# peaks - \# passes $+\#$ sinks $=1$, provided all these numbers are finite. Here, peaks are local maxima of height, sinks local minima, and passes critical points which are neither peaks nor sinks.
Hint: Poincaré-Hopf. Which vector field is appropriate?
b) Find an island with 3 peaks, 1 pass, and no sinks. Correct the formula in part a) (!).
c) Now admit lakes and show that

$$
\# \text { peaks }-\# \text { passes }+\# \text { sinks }=1-\# \text { lakes }
$$

Problem 30 - Symmetries and umbilics:

Let $f: U^{2} \rightarrow \mathbb{R}^{3}$ be a two-dimensional surface. For simplicity, suppose $f(p)=0$ for some $p \in U$ such that $T_{p} f$ agrees with the $x y$-plane.
a) Let $R_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be 120° rotation about the z-axis. Prove: If $f(U)$ is invariant under the rotation R, then p is an umbilic [Nabelpunkt].
b) Does part a) hold for an arbitrary rotation R_{k} of angle $2 \pi / k$ where $k=2,3, \ldots$?
c) Let $R_{6}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation by 60° about the z-axis, and S reflection in the $x y$ plane. Prove: If $f(U)$ is invariant under $R_{\overline{6}}:=S \circ R_{6}$, then the principal curvatures at p vanish, that is p is a flat point.

