TECHNISCHE UNIVERSITÄT
Prof. K. Große-Brauckmann

5. Problems for CMC Surfaces

Problem 16 - Test:

a) Why is it no loss of generality to assume that the matrix A in $L u=A d^{2} u=\sum a^{i j} \partial_{i j} u$ is symmetric?
b) Prove that if u is subharmonic $(\Delta u \geq 0)$ on a bounded domain U, and h is a harmonic function $(\Delta h=0)$ with the same boundary values, $\left.u\right|_{\partial U}=\left.h\right|_{\partial U}$, then $u(x) \leq h(x)$ for all $x \in U$. Discuss also the equality case $u(p)=h(p)$ for an interior point $p \in U$.
c) A standard linear algebra result is that a linear map $L: V \rightarrow W$ with ker $L=0$ gives $L x=b$ has at most one solution x. Draw the analogy to the uniqueness theorem for the Poisson equation $L u=f$. (What are the vector spaces V, W ?)

Problem 17 - Uniqueness and symmetry of solutions:

Suppose σ is reflection in the hyperplane $\left\{x_{n}=0\right\} \subset \mathbb{R}^{n}$,

$$
\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \sigma\left(x_{1}, \ldots, x_{n}\right):=\left(x_{1}, \ldots, x_{n-1},-x_{n}\right) .
$$

We call a domain $U \subset \mathbb{R}^{n}$ mirror symmetric if $\sigma(U)=U$. For a bounded mirror symmetric domain U, consider a function $u \in C^{2}(U, \mathbb{R}) \cap C^{0}(\bar{U}, \mathbb{R})$ whose boundary values are invariant under σ, that is, $u(x)=u(\sigma(x))$ for all $x \in \partial U$.
Consider the following cases:

1. u is harmonic,
2. u solves a uniformly elliptic equation $L u=0$,
a) Decide for each of the two cases if u respects the symmetry σ, i.e., $u\left(x_{1}, \ldots, x_{n}\right)=$ $u\left(x_{1}, \ldots, x_{n-1},-x_{n}\right)$ for all $x \in U$.
b) On the other hand, find a solution v of the equation $\Delta v+v=0$ which has symmetric boundary values, but is not invariant under σ (it suffices to consider $n=1$).
c) Consider the cases for which the answer under a) is in the affirmative. Prove the same statement more generally for isometries $A \in \mathrm{O}(n)$, for instance for rotations.

Problem 18 - Maximum principle with exceptional points:

Let us first state two facts:

1. $\log |x|: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ is harmonic,
2. If $f: \Omega^{2} \rightarrow \mathbb{R}^{2}$ is conformal then $\Delta(u \circ f)=(\Delta u) \circ f$.

Use these facts to prove the following:
a) Let $D \subset \mathbb{R}^{2}$ be the unit disk, and set $D^{*}:=\bar{D} \backslash\{(1,0)\}, S^{*}:=\mathbb{S}^{1} \backslash\{(1,0)\}$. Find a harmonic function $u \in C^{2}(D, \mathbb{R}) \cap C^{0}\left(D^{*}, \mathbb{R}\right)$ with boundary values $\left.u\right|_{S^{*}}=0$ such that u is not constant.
Hint: Exhibit a nonzero harmonic function with zero boundary values on the upper halfplane.
b) Prove that each bounded harmonic function $u \in C^{2}(D, \mathbb{R}) \cap C^{0}\left(D^{*}, \mathbb{R}\right)$ is constant. Hint: Compare with $\epsilon \log |z-1|$.
c) Generalize: Can you admit more than just one exceptional point? Can you replace the boundedness assumption on u by a growth condition at the exceptional points? What is the n-dimensional generalization?
d) Prove the two facts stated above by calculation.

