

10. Problems for CMC Surfaces

Problem 35 – Properness:

- a) Prove that the composition of proper maps is proper.
- b) What does it mean for a continuous function $f : \mathbb{R} \to \mathbb{R}$ to be proper?
- c) Show that for a compact domain A, a continuous map $f: A \to \mathbb{R}^n$ is always proper.
- d) Give an example for a homeomorphism $\varphi \colon B^n \to \mathbb{R}^n$; it is useful to construct a homeomorphism $\psi \colon (0,1) \to (0,\infty)$ first. Prove that if $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is proper, then $f \circ \varphi \colon B^n \to \mathbb{R}^n$ is proper. That is, it makes no difference if we define a properly embedded plane as the image of D or \mathbb{R}^2 .
- e) More advanced: Prove that the following two characterizations of the properness of a map $F: S \subset \mathbb{R}^m \to \mathbb{R}^n$ for an arbitray domain S are equivalent.
 - Compact sets $K \subset \mathbb{R}^n$ have compact preimage $F^{-1}(K) \subset S$,
 - For all paths γ which leave any compact subset the image path $c = F \circ \gamma$ also leaves any compact subset.

Problem 36 – Stereographic projection:

Let f_{\pm} be projection of \mathbb{S}^n from the north or south pole onto the equatorial plane. Under the assumption that this map is differentiable, check geometrically (no computation!) that the transition map $\tau(x) := (f_{\pm}^{-1} \circ f_{\pm})(x) = x/|x|$

- a) is conformal.
- b) Is τ orientation preserving?

Problem 37 – Totally umbilic surfaces are spheres:

We want to prove that a surface Σ for which each point is umbilic is a subset of the sphere \mathbb{S}^2 or the plane. (We do not assume constant mean curvature.)

- a) Consider a parameterization $(f(x, y), \nu(x, y))$ and differentiate the equation for a principal curvature direction to derive the equation $\nu + \kappa f \equiv C$ where $\kappa(x, y)$ and C are constant.
- b) Why is Σ contained in a plane when $\kappa \equiv 0$? Otherwise, take the equation from part a) and show that f has constant distance $1/|\kappa|$ to some point.

Problem 38 – Laplace-Beltrami and mean curvature of a graph:

- a) Write down the Laplace-Beltrami operator for polar coordinates $f: (0, \infty) \times \mathbb{R}$, $f(r, \varphi) = (r \cos \varphi, r \sin \varphi)$.
- b) Let $u \in C^{\infty}(\Omega^n, \mathbb{R})$ and consider the graph $M = \{(x, u(x)) : x \in \Omega\}$. Check the equation $\Delta_M(x, u(x)) = -nH(x, u(x))$, where Δ_M is the Laplace-Beltrami operator for the graph.