10. Problems for CMC Surfaces

Problem 35 - Properness:

a) Prove that the composition of proper maps is proper.
b) What does it mean for a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ to be proper?
c) Show that for a compact domain A, a continuous map $f: A \rightarrow \mathbb{R}^{n}$ is always proper.
d) Give an example for a homeomorphism $\varphi: B^{n} \rightarrow \mathbb{R}^{n}$; it is useful to construct a homeomorphism $\psi:(0,1) \rightarrow(0, \infty)$ first. Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is proper, then $f \circ \varphi: B^{n} \rightarrow \mathbb{R}^{n}$ is proper. That is, it makes no difference if we define a properly embedded plane as the image of D or \mathbb{R}^{2}.
e) More advanced: Prove that the following two characterizations of the properness of a map $F: S \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ for an arbitray domain S are equivalent.

- Compact sets $K \subset \mathbb{R}^{n}$ have compact preimage $F^{-1}(K) \subset S$,
- For all paths γ which leave any compact subset the image path $c=F \circ \gamma$ also leaves any compact subset.

Problem 36 - Stereographic projection:

Let $f_{ \pm}$be projection of \mathbb{S}^{n} from the north or south pole onto the equatorial plane. Under the assumption that this map is differentiable, check geometrically (no computation!) that the transition map $\tau(x):=\left(f_{+}^{-1} \circ f_{-}\right)(x)=x /|x|$
a) is conformal.
b) Is τ orientation preserving?

Problem 37 - Totally umbilic surfaces are spheres:

We want to prove that a surface Σ for which each point is umbilic is a subset of the sphere \mathbb{S}^{2} or the plane. (We do not assume constant mean curvature.)
a) Consider a parameterization $(f(x, y), \nu(x, y))$ and differentiate the equation for a principal curvature direction to derive the equation $\nu+\kappa f \equiv C$ where $\kappa(x, y)$ and C are constant.
b) Why is Σ contained in a plane when $\kappa \equiv 0$? Otherwise, take the equation from part a) and show that f has constant distance $1 /|\kappa|$ to some point.

Problem 38 - Laplace-Beltrami and mean curvature of a graph:

a) Write down the Laplace-Beltrami operator for polar coordinates $f:(0, \infty) \times \mathbb{R}$, $f(r, \varphi)=(r \cos \varphi, r \sin \varphi)$.
b) Let $u \in C^{\infty}\left(\Omega^{n}, \mathbb{R}\right)$ and consider the graph $M=\{(x, u(x)): x \in \Omega\}$. Check the equation $\Delta_{M}(x, u(x))=-n H(x, u(x))$, where Δ_{M} is the Laplace-Beltrami operator for the graph.

