1. Problems for CMC Surfaces

Problem 1 - Lagrange identity:

Let $x, y \in \mathbb{R}^{n}$ and consider the $(n \times n)$-matrix C with entries

$$
c_{i j}:=x_{i} y_{j}-x_{j} y_{i}=\operatorname{det}\left(\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right) .
$$

a) For $\|C\|^{2}:=\sum_{i<j} c_{i j}^{2}$ half the L^{2}-norm of C, prove that $\|C\|^{2}=|x|^{2}|y|^{2}-\langle x, y\rangle^{2}$.
b) Conclude the Lagrange identity

$$
|v|^{2}|w|^{2}=\langle v, w\rangle^{2}+|v \times w|^{2} \quad \text { for all } v, w \in \mathbb{R}^{3} .
$$

c) Use a) to prove that the Cauchy-Schwarz inequality for \mathbb{R}^{n} is exactly attained with equality when x, y are linearly dependent.

Problem 2 - Parallel surfaces of a cylinder:

Let $C(r)$ be a cylinder in \mathbb{R}^{3} with radius r.
a) Show that for any pair of points $p, q \in C(r)$ there is an isometry of \mathbb{R}^{3} which maps p to q (is it unique?). Conclude that the Gauss curvature is constant.
b) Consider the cylinder $C_{h}(r)$ of radius r with height h (without the bounding disks). Insert the area of $C_{h}(r+t)$ and $C_{h}(r)$ into the expansion of area for parallel surfaces and conclude that K must vanish.

Problem 3 - Graphs and minimality:

Let the graph $(x, y, u(x, y))$ represent a minimal surface. Examine which of the following graphs $(x, y, \tilde{u}(x, y))$ are also minimal:
a) $\tilde{u}=u+c$ for $c \in \mathbb{R}$,
b) $\tilde{u}=c u$ for $c \in \mathbb{R}$,
c) $\tilde{u}=c u(c x, c y)$ or $\tilde{u}=c u\left(\frac{x}{c}, \frac{y}{c}\right)$ for $c \neq 0$, where the domain is chosen suitably.

Problem 4 - Minimal Graphs:

a) Differentiate the divergence form of the mean curvature equation for graphs to obtain a second order equation in the standard form

$$
n H=\sum_{1 \leq i, j \leq n} a^{i j}(x, u, D u) \partial_{i j} u
$$

Compare the result with the formula for $n=2$ obtained in class.
b) Prove that the equation is elliptic in the following sense: Suppose $u: \Omega \rightarrow \mathbb{R}$ satisfies $|\nabla u|<K$. Then there exists $\lambda=\lambda(K)$ such that

$$
\sum_{1 \leq i, j \leq n} a^{i j}(x, u, D u) \xi_{i} \xi_{j}>\lambda|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{n} \backslash\{0\} \text { and } x \in \Omega
$$

