Fachbereich Mathematik Prof. K. Große-Brauckmann 22.4.2010

1. Problems for CMC Surfaces

Problem 1 – Lagrange identity:

Let $x, y \in \mathbb{R}^n$ and consider the $(n \times n)$ -matrix C with entries

$$c_{ij} := x_i y_j - x_j y_i = \det \begin{pmatrix} x_i & x_j \\ y_i & y_j \end{pmatrix}$$

- a) For $||C||^2 := \sum_{i < j} c_{ij}^2$ half the L²-norm of C, prove that $||C||^2 = |x|^2 |y|^2 \langle x, y \rangle^2$.
- b) Conclude the Lagrange identity

$$|v|^2|w|^2 = \langle v,w\rangle^2 + |v\times w|^2 \qquad \text{for all } v,w\in \mathbb{R}^3.$$

c) Use a) to prove that the Cauchy-Schwarz inequality for \mathbb{R}^n is exactly attained with equality when x, y are linearly dependent.

Problem 2 – Parallel surfaces of a cylinder:

Let C(r) be a cylinder in \mathbb{R}^3 with radius r.

- a) Show that for any pair of points $p, q \in C(r)$ there is an isometry of \mathbb{R}^3 which maps p to q (is it unique?). Conclude that the Gauss curvature is constant.
- b) Consider the cylinder $C_h(r)$ of radius r with height h (without the bounding disks). Insert the area of $C_h(r+t)$ and $C_h(r)$ into the expansion of area for parallel surfaces and conclude that K must vanish.

Problem 3 – Graphs and minimality:

Let the graph (x, y, u(x, y)) represent a minimal surface. Examine which of the following graphs $(x, y, \tilde{u}(x, y))$ are also minimal:

- a) $\tilde{u} = u + c$ for $c \in \mathbb{R}$,
- b) $\tilde{u} = cu$ for $c \in \mathbb{R}$,
- c) $\tilde{u} = cu(cx, cy)$ or $\tilde{u} = cu(\frac{x}{c}, \frac{y}{c})$ for $c \neq 0$, where the domain is chosen suitably.

Problem 4 – Minimal Graphs:

a) Differentiate the divergence form of the mean curvature equation for graphs to obtain a second order equation in the standard form

$$nH = \sum_{1 \le i,j \le n} a^{ij}(x,u,Du) \,\partial_{ij}u.$$

Compare the result with the formula for n = 2 obtained in class.

b) Prove that the equation is elliptic in the following sense: Suppose $u: \Omega \to \mathbb{R}$ satisfies $|\nabla u| < K$. Then there exists $\lambda = \lambda(K)$ such that

$$\sum_{1 \le i,j \le n} a^{ij}(x,u,Du) \, \xi_i \xi_j > \lambda |\xi|^2 \quad \text{for all } \xi \in \mathbb{R}^n \setminus \{0\} \text{ and } x \in \Omega.$$