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iv K. Grosse-Brauckmann: Surfaces of constant mean curvature

Introduction

The class was given for 4th and 5th year students of mathematics. The prerequisites in-

cluded only a short course in the differential geometry of surfaces. Some students in the

audience also knew about manifolds and Riemannian geometry, but the class only assumed

knowledge on submanifolds of Euclidean space.

The theorems of Alexandrov and Hopf were the main topic of the class. They are sup-

plemented with more basic material on the first and second variation, and the example

of the Delaunay surfaces of revolution. At the end I presented more advanced material

on non-compact constant mean curvature surfaces with finite topology, namely the first

part of the paper by Korevaar, Kusner, and Solomon. Together with Kapouleas’ existence

results, this paper has been very influential in the recent develpment of the theory.

An attractive feature of the theory is that it makes use of a lot of mathematics worth

knowing: The Alexandrov Theorem builds on the main tool to study elliptic PDE’s, the

maximum principle. The Hopf theorem makes use of classical global surface theory, the

Poincaré-Hopf index theorem, together with some complex analysis; moreover it provides an

opportunity to present the integrability equations for hypersurfaces. Since Stokes’ theorem

and homology theory was not required, I could only outline the use of the mapping degree.

Certainly, there is room for improvement: The global notion of a surface should be included

in the introductory chapter. A more Riemannian approach could serve to derive the first

variation, together with the principle of force balancing. This would suffice to solve the

ODE for the Delaunay surfaces, perhaps even to characterize them as roulettes of conic

sections. Also, the stability arguments should be presented explicitly. Finally, the Hopf

theorem should be described in terms of quadratic differentials.

There is also much further material worth presenting. I have not touched on any regularity

issues, in particular analyticity of the solutions to the mean curvature equation. Periodic

surfaces are missing. I have not derived the linearization of the mean curvature operator,

a topic crucial for all analytic existence proofs. The construction of the Wente tori would

be nice to include. Also, there is a lot more to say about the case of minimal surfaces.

I used several sources to prepare the class. Besides the books by Hopf and Spivak, I also

used handwritten notes by K. Steffen. Particular thanks go to St. Fröhlich for his notes on

the second variation. Parts in small print were not presented in the lectures.

I thank Miroslav Vrzina and Dominik Kremer for suggesting corrections to me.

Darmstadt, July 2010 Karsten Große-Brauckmann
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2. Lecture, Thursday 15.4.10

1. The equations

1.1. Review of mean curvature for parametrized hypersurfaces. For this section,

suppose f : U → Rn+1 is a hypersurface with Gauss map ν : U → Sn. Let us recall from

differential geometry:

Definition. (i) The shape operator [Weingartenabbildung] of (f, ν) is the mapping

S : U × Rn → Rn, (p, X) 7→ Sp(X) := −(dfp)
−1
(
dνp(X)

)
.

(ii) The second fundamental form of (f, ν) is

(1) b : U × Rn × Rn → R, (p, X, Y ) 7→ bp(X, Y ) :=
〈
ν(p), d2fp(X, Y )

〉
.

Since 0 = 〈ν, df(Y )〉 we have

0 = ∂X

〈
ν, df(Y )

〉
=
〈
dν(X), df(Y )

〉
+
〈
ν, df2(X, Y )

〉
.

This gives the following relationship of the bilinear form bp and the shape operator Sp:

(2) b(X, Y ) =
〈
ν, d2f(X, Y )

〉
= −

〈
dν(X), df(Y )

〉
= g(SX, Y ) for all X,Y ∈ Rn,

and so by the Schwarz lemma b is bilinear or S self-adjoint. Moreover, identity (2) explains

our sign choice for S.

The shape operator S is self-adjoint, and so has a basis of eigenvectors:

Theorem 1. For each p ∈ U there exists a g-orthonormal basis v1, . . . , vn of Rn of ei-

genvectors for Sp, called principal curvature directions [Hauptkrümmungsrichtungen], with

eigenvalues κ1, . . . , κn, called principal curvatures [Hauptkrümmungen]. The eigenvalues

are independent of the parameterization chosen.

To see the last claim, note that any two representations S and S̃ are similar:

(3) S̃p̃ := −(df̃p̃)
−1 · dν̃p̃ = −(dϕp̃)

−1 · (dfp)
−1 · dνp · dϕp̃ = (dϕp̃)

−1 · Sp · dϕp̃

Remark. Another characterization of a principal curvature direction is a critical direction

for the normal curvature X 7→ g(SX, X) on the g-unit sphere ‖X‖2
p = 1. In particular, for

dimension n = 2, minimal and maximal normal curvature must agree with κ1,2.

Definition. The mean curvature [mittlere Krümmung] H is given by

H(p) :=
1

n
trace Sp =

1

n

(
κ1(p) + . . . + κn(p)

)
.

A surface with H ≡ 0 is called minimal.
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Often, it is advantageous to consider the mean curvature vector H(p) := H(p)ν(p), which

is independent of the Gauss map chosen (why?).

Example. The sphere Sn
R of radius R > 0 with inner normal ν = − 1

R
f has dν = − 1

R
df

and thus S = 1
R

id. All directions are principal, and κi = 1
R
, which also gives the average

H = 1
R
.

Let us state a simple but important fact:

Proposition 2. If f has mean curvature function H, then the dilated surface af for a > 0

has mean curvature function 1
a
H.

Proof. The parameterization of the dilated surface f̃ = af satisfies df̃ = a df and ν̃ = ν.

Hence S̃ = −(df̃)−1dν̃ = 1
a
(−df)−1dν = 1

a
S. �

Consequently, if we are interested in surfaces with constant mean curvature H, then either

H ≡ 0 or we can achieve H ≡ 1 by scaling and possibly a change of orientation. Note,

however, that the existence of dilations is a special feature of the ambient space Rn.

To be able to calculate H, let us derive representations with respect to the standard basis

e1, . . . , en of Rn. We set

(4) S(ej) =
n∑

i=1

Si
jei and bij := b(ei, ej) =

〈
ν,

∂2f

∂xi∂xj

〉
= −

〈 ∂ν

∂xi

,
∂f

∂xj

〉
.

Then

bkj
(2)
= g

(
ek, Sej

)
= g
(
ek,
∑

i S
i
jei

)
=
∑

i

g(ek, ei)S
i
j =

∑
i

gkiS
i
j,

or in matrix notation b = gS. So S = g−1b has the not necessarily symmetric matrix

Si
j =

∑
k

gikbkj.

We conclude the following formulas which we will need lateron: The Weingarten formula

(5) −∂jν = df(Sej) = df
(∑

i

Si
jei

)
=
∑
i,k

gikbkj∂if, j = 1, . . . , n

and formulas for mean curvature

(6) H =
1

n
trace S =

1

n
trace(g−1b) =

∑
i,j

1

n
gijbij,

and Gauss curvature

(7) K = det S = det(g−1b) = det g−1 det b =
det b

det g
.
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Remark. For a Riemannian manifold (Nn+1,∇), the mean curvature of a submanifold

Mn ⊂ Nn+1 with normal vector field ν can be similarly defined in terms of the shape

operator SX := −∇Xν and second fundamental form b(X, Y ) := g(SX, Y ). Again, we can

set H := 1
n

trace S.

1.2. Mean curvature equation for parameterized surfaces. In dimension 2, the in-

verse of the metric g has the simple representation g−1 = 1
det g

(
g22 −g12
−g21 g11

)
, and so (6) gives:

Theorem 3. The mean curvature of a surface f : U2 → R3 satisfies

H =
1

2 det g
(g22b11 − 2g12b12 + g11b22)

=
|fy|2

〈
fxx, ν

〉
− 2〈fx, fy〉

〈
fxy, ν

〉
+ |fx|2

〈
fyy, ν

〉
2
(
|fx|2|fy|2 − 〈fx, fy〉2

) .

(8)

Let us know introduce an assumption which simplifies the equation:

Definition. A surface f : U ⊂ Rn → Rm has a conformal [konform] parametrization

if its first fundamental form is some multiple of the standard metric, that is, there is

λ : U → (0,∞) such that

gij(p) = λ(p) δij for all p ∈ U and 1 ≤ i, j ≤ n.

For example, a holomorphic map is conformal and orientation preserving. Conformal pa-

rameterizations are useful in dimension two. A two-dimensional surface f is conformal if

and only if g = ( λ 0
0 λ ) for λ(x, y) > 0, or

|fx| ≡ |fy| > 0 and 〈fx, fy〉 ≡ 0.

According to a deep result, locally any two-dimensional surface has a conformal parame-

terization, see [Sy2, XII, §8, Satz 2].

Under the assumption that a parameterization is conformal the equation for mean curvature

simplifies considerably:

Theorem 4. Suppose f : U2 → R3 is a two-dimensional surface in conformal parameteriza-

tion. Moreover assume the Gauss map is chosen positively oriented, i.e., det(fx, fy, ν) > 0.

Then f satisfies the parametric mean curvature equation

(9) ∆f = 2Hfx × fy for all p ∈ U ;

here ∆f = fxx + fyy is the standard Laplacian.
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Recall that the outer or vector product of any two vectors v, w ∈ R3 is given by

v × w =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

The cross product is perpendicular to v and w, and v, w, v × w are positively oriented.

Geometrically, |v × w| is the area content of the parallelgram spanned by v, w. In R3 the

Lagrange identity

(10) |v|2|w|2 = 〈v, w〉2 + |v × w|2 for all v, w ∈ R3,

is a quantitative version of the Cauchy-Schwarz inequality (see problems). It shows that

for perpendicular v, w and oriented normal ν we must have v × w = |v||w| ν.

A function u : Rn → R is called harmonic [harmonisch] if ∆u ≡ 0. Thus a conformally

parametrized surface f is minimal if and only if ∆f ≡ 0, that is, if and only if each of the

three component functions is harmonic.

Examples. 1. The helicoid of pitch 1 has a conformal parameterization

f : R2 → R3, f(x, y) = (sinh x cos y, sinh x sin y, y).

By the theorem, the three coordinate functions are harmonic (check!). Find a conformal

parameterization for the helicoid of pitch h > 0!

2. Let us represent an arbitrary plane P ⊂ R3. Choose two vectors v, w spanning P , such

that |v| = |w| = 1, 〈v, w〉 = 0. Then f(x, y) := xv+yw is a conformal parameterization. The

fact that the plane is minimal (H ≡ 0) is equivalent to the fact that the three coordinate

functions fk(x, y) = xvk + ywk, are harmonic.

Proof. Conformality means |fx| = |fy| =: λ and 〈fx, fy〉 = 0. Using this in (8) gives

(11) H =
1

2λ2
〈fxx + fyy, ν〉 =

1

2λ2
〈∆f, ν〉.

To derive (9) we claim that the vectors ∆f = fxx + fyy and ν are parallel. To see this we

differentiate the conformality conditions:

∂

∂x
|fx|2 =

∂

∂x
|fy|2 ⇒ 〈fxx, fx〉 = 〈fxy, fy〉

∂

∂y
〈fx, fy〉 = 0 ⇒ 〈fyy, fx〉 = −〈fxy, fy〉

Adding these identities gives 〈fxx + fyy, fx〉 = 0, and similarly 〈fxx + fyy, fy〉 = 0. Since

(fx, fy, ν) is an orthogonal frame, this proves ∆f ‖ ν.
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Decomposing with respect to the basis (fx, fy, ν) therefore gives

∆f = 〈∆f, ν〉ν (11)
= 2Hλ2ν.

Using the positive orientation of (fx, fy, ν) we prove (9) by

λ2ν = |fx||fy|ν = fx × fy. �

3. Lecture, Tuesday 20.4.10

1.3. Mean curvature equation for graphs. Let u : Un → R, and f(x) =
(
x, u(x)

)
be

a graph in Rn+1. There is a frame consisting of the vectors spanning the tangent space,

∂if(x) =

(
ei

∂iu

)
, for i = 1, . . . , n,

and an upper normal

(12) ν(x) =
1√

1 + |∇u(x)|2

(
−∇u(x)

1

)
.

Theorem 5. Let f : U → Rn+1 be a graph, f(x) =
(
x, u(x)

)
, and let ν be its upper normal.

Then the mean curvature H = H(x) satisfies

(13) H =
1

n
div

(
∇u√

1 + |∇u|2

)
.

Proof. To calculate trace S =
∑

i S
i
i we use the defining equation for S,

−∂iν = −dν(ei) = df(Sei)
(4)
= df

(∑
k

Sk
iek

)
=
∑

k

Sk
idf(ek) = S1

i

(
e1

∂1u

)
+ . . . + Sn

i

(
en

∂nu

)
,

valid for i = 1, . . . , n. The i-th component (i ≤ n) reads −∂iν
i = Si

i and so (12) gives

∂i

(
∂iu√

1 + |∇u|2

)
= Si

i.

Consequently, the trace can be written

H =
1

n

∑
i

Si
i =

1

n

∑
i

∂i

(
∂iu√

1 + |∇u|2

)
=

1

n
div

(
∇u√

1 + |∇u|2

)
.

�

The theorem gives the mean curvature equation in divergence form. Upon differentiation,

the standard form of this second order partial differential equation arises. For the two-

dimensional case, it is easier to derive this form of the equation directly from (8). Note

that

(14) gij =
〈
∂if, ∂jf

〉
=

〈(
ei

∂iu

)
,

(
ej

∂ju

)〉
= δij + ∂iu ∂ju
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and

(15) bij = 〈ν, ∂ijf〉 =

〈
1√

1 + |∇u|2

(
−∇u

1

)
,

(
0

∂iju

)〉
=

∂iju√
1 + |∇u|2

.

Hence for the two-dimensional case of surfaces

g =

(
1 + u2

x uxuy

uxuy 1 + u2
y

)
, b =

1√
1 + (∇u)2

(
uxx uxy

uxy uyy

)
.

Using det g = 1 + u2
x + u2

y = 1 + |∇u|2 we obtain from (8)

H =
1

2
(
1 + |∇u|2

) (1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy√
1 + |∇u|2

Note that at a point p with horizontal tangent plane, this equation becomes 2H(p) = ∆u(p).

In general we obtain:

Theorem 6. A surface which is a graph
(
x, y, u(x, y)

)
, where u ∈ C2(U2, R) and H : U →

R is the mean curvature at (x, y, u(x, y)) satisfies the mean curvature equation

(16) 2H
(
1 + |∇u|2

)3/2
= (1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy for all (x, y) ∈ U.

This equation is a second order partial differential equation, depending on second and

first derivatives of u. The function u itself does not enter: Indeed, (x, y, u(x, y)) and

(x, y, u(x, y) + c) for c ∈ R have the same mean curvature. The equation is nonlinear,

meaning that if u and v satisfy (16), then (u+v) need not. Nevertheless we will later prove

a maximum principle.

1.4. Problems.

Problem 1 – Lagrange identity:

Let x, y ∈ Rn and consider the (n× n)-matrix C with entries

cij := xiyj − xjyi = det

(
xi xj

yi yj

)
.

a) For ‖C‖2 :=
∑

i<j c
2
ij half the L2-norm of C, prove that ‖C‖2 = |x|2|y|2 − 〈x, y〉2.

b) Conclude the Lagrange identity

|v|2|w|2 = 〈v, w〉2 + |v × w|2 for all v, w ∈ R3.

c) Use a) to prove that the Cauchy-Schwarz inequality for Rn is attained with equality exactly
when x, y are linearly dependent.
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2. Variations of area and volume

In 1762 Lagrange introduced what we nowadays call the calculus of variations [Variati-

onsrechnung]. He considered the area content of a surface with fixed boundary which is a

graph of minimal area and showed that the graph satisfies the minimal surface equation in

divergence form (13)

∂

∂x

ux√
1 + u2

x + u2
y

+
∂

∂y

uy√
1 + u2

x + u2
y

= 0.

Only in the 19th century was it recognized that the latter condition is precisely the condi-

tion that twice the mean curvature vanishes.

The present section introduces the variational ideas. We find it advantageous to use ex-

pansions for area and volume rather than derivatives.

2.1. Area. Let us review here material from Analysis IV. Given an immersion f : U ⊂
Rn → Rn+k, its first fundamental form gij = 〈∂if, ∂jf〉 determines the n-dimensional area

content A(f) = AU(f)

AU(f) :=

∫
U

√
det g dx.

Remarks. 1. For an embedding AU(f) agrees with the n-dimensional measure of the set

f(U). However, for an immersion, AU(f) counts the area of f(U) with the multiplicity it

is attained, and so AU(f) can be different from the measure of f(U).

2. By means of a partition of unity, we can define the area of a hypersurface or immersed

manifold, in case more than one chart is needed.

Let us recall the computation proving that AU(f) remains invariant under change of pa-

rameters: For ϕ : V → U a diffeomorphism and f̃ := f ◦ϕ we have according to chain rule

and change of variables formula

AV (f̃) =

∫
V

√
det(df̃T df̃) dx =

∫
V

√
det(dϕT dfT

ϕ dfϕdϕ) dx

=

∫
V

√
det dϕT det(dfT

ϕ dfϕ) det dϕ dx =

∫
V

√
det(dfT

ϕ dfϕ) | det dϕ| dx

=

∫
U

√
det(dfT df) dx = AU(f);

here, the notation dfϕ(x) means the differential df is evaluated at the point ϕ(x).

We call det g = det(dfT df) the Gram determinant. For the case n = 2 and f = f(x, y) we

have g =
(

fx

fy

)
(fx, fy) =

(
|fx|2 〈fx,fy〉
〈fx,fy〉 |fy |2

)
and so the Gram determinant reduces to

(17)
√

det g =
√

g11g22 − g2
12 =

√
|fx|2|fy|2 − 〈fx, fy〉2

(10)
=
∣∣fx × fy

∣∣.



8 K. Grosse-Brauckmann: Surfaces of constant mean curvature, SS 10

From (17) we conclude A(f) =
∫
|fx × fy| dxdy which says that the area of a surface can

be obtained by integrating the area element |fx × fy|.

2.2. A lemma.

Lemma 7. If f is a two-dimensional surface with Gauss map ν we have

(18)
〈
dν(X), dν(Y )

〉
= 2Hb(X, Y )−Kg(X, Y ) for all X, Y ∈ R2.

The bilinear form on the left is called the third fundamental form.

Proof. Let κ1, κ2 be the principal curvatures and define the bilinear form

T (X,Y ) :=
〈
(dν + κ1df)X, (dν + κ2df)Y

〉
.

Let X1, X2 be two linearly independent principal curvature directions for κ1, κ2. Then on

the one hand

(19) T (X1, Y ) = T (Y,X2) = 0 for all Y ∈ R2.

On the other hand we claim T is symmetric. Indeed we can express T in terms of symmetric

forms as follows:

T (X,Y ) = 〈dν(X), dν(Y )〉+ κ1κ2〈df(X), df(Y )〉+ κ1〈df(X), dν(Y )〉+ κ2〈df(Y ), dν(X)〉

= 〈dν(X), dν(Y )〉+ Kg(X, Y )− 2Hb(X, Y ).

Since X1, X2 is a basis, an arbitrary vector X can be represented as X = aX1 + bX2.

Therefore,

T (X,Y ) = aT (X1, Y ) + bT (X2, Y )
T symm.

= aT (X1, Y ) + bT (Y,X2)
(19)
= 0 for all Y,

meaning that T vanishes identically. Plugging this into the previous expression for T implies

our claim. �

2.3. Expansion of the area functional.

Theorem 8. Let f : Ω → R3 be a surface with Gauss map ν and u ∈ C1
0(Ω, R) be diffe-

rentiable with compact support U := supp u ⊂ Ω. Then the normal variation

(20) f t := f + tuν : Ω → R3

is an immersion for sufficiently small |t|, whose area has the following expansion as t → 0,

(21) AU(f t) = AU(f)− 2t

∫
U

uH dS + t2
∫

U

1

2
‖∇u‖2+u2K dS + O(t3).

Here ‖∇u‖2 :=
∑2

i,j=1 gij∂iu ∂ju is the Riemannian gradient, and dS =
√

det g dλ is the

Riemannian area element of f , and H, K denote the mean or Gauss curvature of f at x.
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Example. Vary the 2-sphere Sr through spheres Sr+t of radius r + t. With respect to the

outer normal ν we have u ≡ 1. Expanding the area content by powers of t we obtain

A
(
Sr+t

)
= 4π(r + t)2 = 4πr2 + t 8πr + t24π.

Indeed, the coefficient of t gives 2
∫

Sr
H = 2(4πr2)−1

r
= −8πr, while the coefficient of t2

gives
∫

Sr
K = 4πr2 1

r2 = 4π.

Remarks. 1. A normal variation seems more restrictive than a general variation f t :=

f + tX, where X ∈ C1
0(U, Rn) is a vector field with compact support. However, for t small

and upon reparametrization, any general variation can be written as a normal variation;

this doesn’t affect the area.

2. For u : Ω → R the Riemannian gradient ∇u is a tangent vector (a column), while du

is a cotangent vector (a row). By definition, g(∇u, X) = du(X) or
∑

jk gjk(∇u)jXk =∑
i ∂iuX i, and so (∇u)j =

∑
l g

jl∂lu. Hence

‖∇u‖2 =
∑
ij

gij(∇u)i(∇u)j =
∑
ijkl

gijg
ik∂ku gjl∂lu =

∑
kl

gkl∂ku ∂lu.

4. Lecture, Thursday 22.4.10

Proof. Step 1: We calculate the first fundamental form of f t(U). We have for each i

(22) ∂if
t = ∂if + tu ∂iν + t ∂iu ν.

Using that ν and df are orthogonal, and bij = −〈∂if, ∂jν〉 = bji we obtain

gt
ij :=

〈
∂if

t, ∂jf
t
〉

= gij − 2tubij + t2
(
u2〈∂iν, ∂jν〉+ ∂iu ∂ju

)
(18)
= gij − 2tubij + t2

(
u2(2Hbij −Kgij) + ∂iu ∂ju

)
.

Step 2: We calculate the determinant of gt, that is, the coefficients of the expansion

det gt = gt
11g

t
22 − (gt

12)
2 = (I) + t (II) + t2(III) + O(t3).

Clearly,

(I) = g11g22 − g2
12 = det g.

The first order terms are

(II) = −2u
(
b11g22 + b22g11 − 2b12g21

) (8)
= −4uH det g
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Finally, the quadratic terms are

(III) = u2
(
2H(b11g22 + b22g11 − 2b12g12)−K(g11g22 + g22g11 − 2g2

12) + 4(b11b22 − b2
12)
)

+ g22 ∂1u ∂1u + g11 ∂2u ∂2u− 2g12 ∂1u ∂2u

(7),(8)
= u2

(
4H2 det g − 2K det g + 4K det g

)
+ det g

∑
i,j=1

gij ∂iu ∂ju.

Collecting all terms, we arrive at the desired expansion

(23) det gt = det g
[
1− 4tuH + t2

(
u2
(
4H2 + 2K

)
+ ‖∇u‖2

)]
+ O(t3).

Since det g 6= 0 and u has compact support this formula shows that indeed det gt 6= 0 for

small |t|. This verifies f t is an immersion.

Step 3: We compute the root of the determinant
√

det gt. To find the root of [. . . ], we use

Taylor’s formula
√

1 + x = 1 +
x

2
− 1

8
x2 + O(x3) as x → 0.

Thus (23) gives√
det gt =

√
det g

(
1− 2tuH + t2u2

(
2H2 + K

)
+

t2

2
‖∇u‖2 − 2t2u2H2 + O(t3)

)
=
√

det g
(
1− 2tuH + t2

(
1
2
‖∇u‖2 + u2K

)
+ O(t3)

)
Step 4: Since AU(f t) =

∫
U

√
det gt dx we obtain the claim by integration. �

Remarks. 1. For two reasons we required the variation to have compact support. First, all

integrals become finite. Second, all functions being integrated then take a maximum; thus

f t is an immersion for small |t|. In case these two properties hold for Ω there is no need to

replace Ω with U .

2. We can avoid using the Taylor expansion of the square root by noting

(24) δg = δ(
√
g
√
g) = 2

√
g (δ

√
g) ⇒ δ

√
g =

1
2
√
g
δg,

Moreover, δ2g = δ2(
√
g
√
g) = δ(2

√
g δ
√
g) = 2(δ

√
g)2 + 2

√
g δ2

√
g and so

δ2
√
g =

1
2
√
g
δ2g − 1

√
g

(δ
√
g)2

(24)
=

1
2
√
g
δ2g − 1

4g3/2
(δg)2

For various purposes, parallel surfaces with u ≡ 1 are interesting. As a corollary to the

variation formula (21) we find that their area behaves as follows.

Corollary 9. Let f : U → R3 be a surface. Then for sufficiently small |t| the parallel

surface f t := f + tν is an immersion, and, provided U has compact closure, we have

(25) AU(f t) = AU(f)− 2t

∫
U

H dS + t2
∫

U

K dS + O(t3).
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That means that the mean curvature at a point can be understood as the first order change

in area element. This can also be verified in a completely elementary way.

2.4. Stationary surfaces and local minima.

Definition. We call a surface f : Ω → Rn+1 stationary for area if

δuνAU(f) :=
d

dt
AU(f + tuν)

∣∣∣
t=0

= 0

for all normal variations u ∈ C1
0(Ω, R) with U := supp u.

Theorem 10. A surface f : U → R3 is stationary for area if and only if H ≡ 0.

In particular, if f has minimal area compared with admissable surfaces f +tuν then H ≡ 0.

This leads to the name minimal surface for surfaces with H ≡ 0.

Proof. From (21) we find

δuνAV (f) = −2

∫
V

uH dS for all u ∈ C1
0(U, R).

The proof then follows using the next lemma. �

Lemma 11 (Fundamental Lemma of the Calculus of Variations). Suppose f ∈ C0(U, R)

and ∫
U

uf dx = 0 for all u ∈ C1
0(U, R).

Then f ≡ 0.

Proof. Suppose that f(x) 6= 0 for some x ∈ U , say f(x) > 0. By continuity of f there is

ε > 0 such that f(y) > 0 for all y ∈ Bε(x). Then choose a function u with compact support

in Bε(x), such that u(x) > 0. The existence of such functions is not hard to show. Then∫
uf dx > 0, contradicting the assumption. �

Why does the lemma fail for general, discontinuous f?

5. Lecture, Tuesday 27.4.10
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2.5. Volume. We want to associate to a surface a reference volume, having the following

properties:

• The volume need only be defined up to an additive constant since we will only be

interested in measuring changes in volume.

• The volume is declared for immersed surfaces, and represents an algebraic volume to a

surface, having both signs.

• We seek a volume formula in terms of a surface integral. (This is also essential for

computational purposes!)

The last requirement lets us invoke the divergence theorem.

Example. One dimension lower, the Green integral formula gives for a compact domain

A ⊂ R2, the vector field x 7→ 1
2
x, and an oriented boundary parameterization c : I → ∂A:

|A| =
∫

A

div
x

2
=

1

2

∫
∂A

〈x, ν〉 dS
dS=|c′|dt

=
1

2

∫
I

〈c,−Jc′〉 dt =
1

2

∫
I

c× c′ dt

Here, 1
2
c × c′ can be considered the signed area of an infinitesimal triangle with vertices

0, c(t), c(t)+ εc′(t); these triangles tesselate A. In case ∂A has self-intersections we can still

use the right hand side to define a signed area content of c.

We use a similar idea in general dimension. The divergence theorem gives for U compact∫
U

div X =
∫

∂U
〈X, ν〉 dS, where ν is the outer normal. The identical vector field ξ 7→ ξ has

div ξ = n. Hence for U ⊂ Rn compact with smooth boundary

V (U) =

∫
U

1 dx =
1

n

∫
∂U

〈
ξ, ν(ξ)

〉
dS.

For an immersed embedded hypersurface f : U
n → Rn+1 consider the cone

C := {tf(x) : t ∈ [0, 1], x ∈ U} ⊂ Rn+1.

Let us assume for a moment that also (t, x) 7→ tf(x) is an embedding, so that

∂C =
{
f(x) : x ∈ U} ∪ {tf(x) : t ∈ [0, 1], x ∈ ∂U

}
=: Sf ∪ SΛ.

The boundary ∂C of the cone is smooth except at 0 and along f(∂U). But these sets have

measure 0 in ∂C and so the divergence theorem is still valid for C.

The conical surface SΛ is foliated by straight segments t 7→ tξ, and so ξ is tangent to SΛ

at tξ. That means ν(ξ) ⊥ ξ and hence∫
SΛ

〈ξ, ν(ξ)〉 dSξ = 0.
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From now on suppose that n = 2. Then, possibly after changing the orientation of U , we

can represent the normal as

(26) ν ◦ f =
∂1f × ∂2f∣∣∂1f × ∂2f

∣∣ ⇒ (ν ◦ f)
√

g = ∂1f × ∂2f.

Consequently ∫
Sf

〈ξ, ν(ξ)〉 dS =

∫
U

〈f, ∂1f × ∂2f〉 dxdy,

If f : U
2 → R3 is only an immersion and the cone not necessarily embedded, we want to

use the same formula to define a volume, which now has a sign:

Definition. Let f : U
2 → R3 be a surface where U is compact. Then we define the (alge-

braic) volume of f by

VU(f) :=
1

3

∫
U

〈f, ∂1f × ∂2f〉 dxdy.

The functional V (f) = 1
n

∫
〈f, ∗(∂1f ∧ . . . ∧ ∂nf)〉 generalizes the algebraic volume to n

dimensions. For manifolds we can use a similar formula in each chart.

2.6. Expansion of the volume functional.

Theorem 12. For the normal variation (20) the algebraic volume has the expansion

(27) VU(f t) = VU(f) + t

∫
U

u dS − t2
∫

U

Hu2 dS + O(t3) for t ∼ 0,

where u ∈ C1
0(Ω, R) with U := supp u and H denotes the mean curvature of f at x.

Here the variation f t and H must be calculated w.r.t. the same normal.

Example. For the sphere S2
r+t, the left hand side is 4

3
π(r+t)3 = 4

3
πr3+t4πr2+t24πr+O(t3).

Indeed, these terms agree with the right hand side since
∫

U
u dS =

∫
S2

r
1 dS = 4πr2 and∫

U
Hu2 dS = 4πr2−1

r
.

Proof. We insert (22) into the integrand to obtain the expansion〈
f t, ∂1f

t × ∂2f
t
〉

=
〈
f + tuν,

(
∂1f + t ∂1(uν)

)
×
(
∂2f + t ∂2(uν)

)〉
=
〈
f, ∂1f × ∂2f

〉
+ t
〈
uν, ∂1f × ∂2f

〉
+ t
〈
f, ∂1(uν)× ∂2f + ∂1f × ∂2(uν)

〉︸ ︷︷ ︸
=:(I)

+ t2
〈
f, ∂1(uν)× ∂2(uν)

〉︸ ︷︷ ︸
=:(II)

+t2
〈
uν, ∂1(uν)× ∂2f + ∂1f × ∂2(uν)

〉︸ ︷︷ ︸
=:(III)

+O(t3).
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Let us now calculate (I) to (III).

First, we use that the product (a, b, c) 7→ 〈a, b× c〉 is alternating to obtain

(I) = ∂1 〈f, uν × ∂2f〉︸ ︷︷ ︸
=:X1

+∂2 〈f, ∂1f × uν〉︸ ︷︷ ︸
=:X2

− 〈∂1f, uν × ∂2f〉 − 〈∂2f, ∂1f × uν〉 − 〈f, uν × ∂12f〉 − 〈f, ∂12f × uν〉

= div X + 2
〈
uν, ∂1f × ∂2f

〉
Due to the compact support of u, the divergence term will not contribute after integration.

Moreover, we can rewrite the contributing term as〈
uν, ∂1f × ∂2f

〉 (26)
= u

〈
ν,
√

g ν
〉

= u
√

g.

We now calculate the first quadratic term, using ν × ν = 0 at the first equality sign:

(II) =
〈
f, u ∂1u(ν × ∂2ν)

〉
+
〈
f, u ∂2u(∂1ν × ν)

〉
+
〈
f, u2∂1ν × ∂2ν

〉
= ∂1

〈
f, 1

2
u2 ν × ∂2ν

〉︸ ︷︷ ︸
=:Y 1

+∂2

〈
f, 1

2
u2 ∂1ν × ν

〉︸ ︷︷ ︸
=:Y 2

−
〈
∂1f, 1

2
u2 ν × ∂2ν

〉
−
〈
∂2f, 1

2
u2 ∂1ν × ν

〉
−
〈
f, 1

2
u2 ν × ∂12ν

〉
−
〈
f, 1

2
u2 ∂12ν × ν

〉
= div Y − u2

2

〈
∂1f, ν × ∂2ν

〉
− u2

2

〈
∂2f, ∂1ν × ν

〉
= div Y +

u2

2

〈
ν, ∂1f × ∂2ν + ∂1ν × ∂2f

〉
(∗)
= div Y − u2H

√
g.

At two places of this calculation we used the fact that (a, b, c) 7→ 〈a, b×c〉 is alternating. The

identity (∗) follows from the Weingarten formula and the expression for mean curvature:

∂1f × ∂2ν + ∂1ν × ∂2f
(5)
= −∂1f ×

∑
j

b2jg
j2∂2f −

∑
j

b1jg
j1∂1f × ∂2f

(6)
= −2H ∂1f × ∂2f

(26)
= −2H

√
g ν.

(28)

Let us finally deal with the second quadratic term. Note first that ν × ∂2f and ∂1f × ν

are perpendicular to ν, meaning that these terms cannot contribute to the scalar product.

Thus we remain with

(III) =
〈
uν, u ∂1ν × ∂2f + ∂1f × u ∂2ν

〉 (28)
= −2u2H

√
g.

Let us now collect all terms:〈
f t, ∂1f

t × ∂2f
t
〉

=
〈
f, ∂1f × ∂2f

〉
+ 3tu

√
g + t div X − 3t2u2H

√
g + t2 div Y + O(t3)
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The divergence terms have compact support and hence do not contribute to the integral.

Thus upon integration we remain with the desired terms:

1

3

∫
U

〈
f t, ∂1f

t × ∂2f
t
〉
dxdy =

1

3

∫
U

〈
f, ∂1f × ∂2f

〉
dxdy + t

∫
U

u dS − t2
∫

U

Hu2 dS + O(t3)

�

Remark. Interestingly enough, the term O(t3) in (27) has a simple precise form, namely

1
3
t3
∫

U
Ku3 dS.

Let us include a proof of this result for completeness. First we write

t3(IV ) := t3
〈
uν, ∂1(uν)× ∂2(uν)

〉
= t3u3

〈
ν, ∂1ν × ∂2ν

〉
For the second equality, note that if the outer product contains a factor involving ν, then it is
perpendicular to ν, and so the scalar product vanishes. We can calculate this term using again
the Weingarten formula:

∂1ν×∂2ν =
∑

k

b1kg
k1∂1f ×

∑
m

b2mg
m2∂2f +

∑
k

b1kg
k2∂2f ×

∑
m

b2mg
m1∂1f

=
((
b11g

11 + b12g
21
)(
b12g

12 + b22g
22
)
−
(
b11g

12 + b12g
22
)(
b12g

11 + b22g
12
))
∂1f × ∂2f

=
(
b11b22

(
g11g22 − (g12)2

)
+ (b12)2

(
(g12)2 − g11g22

))
ν
√
g

= det b det(g−1)ν
√
g = Kν

√
g

So altogether 1
3

∫
U t

3(IV ) dxdy = 1
3

∫
U t

3u3K
√
g dxdy = 1

3 t
3
∫
U u

3K dS.

6. Lecture, Thursday 29.4.10

2.7. Characterization of constant mean curvature surfaces. We introduce the func-

tional

Jh
U(f) := AU(f) + 2hVU(f) =

∫
U

√
g +

2

3
h〈f, fx × fy〉 dxdy.

Combining (21) with (27) we find the following expansion:

Jh
U(f t) = AU(f t) + 2hVU(f t)

= Jh
U(f) + 2t

∫
U

(h−H)u dS + t2
∫

U

1

2
‖∇u‖2+u2(K − 2hH) dS + O(t3)

(29)

That is, if f has constant mean curvature H,

(30) JH
U (f t) = JH

U (f) + t2
∫

U

1

2
‖∇u‖2+u2(K − 2H2) dS + O(t3)

Physical interfaces, like soap films, often minimize area for given volume. Using only the

first order terms of expansions for area A and volume V , we show that they have constant

mean curvature, and they are critical for the functional J for reasons we explain below.
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Theorem 13. For an immersion f : Ω2 → R3, the following statements are equivalent:

(i) f has constant mean curvature H.

(ii) f is critical for area for any compactly supported variation which keeps the enclosed

volume fixed up to first order, that is,

δuνAsupp u(f) = 0 for all u ∈ C1
0(Ω, R) with

∫
supp u

u dS = 0.

(iii) There is H ∈ R such that f is critical for JH , that is,

δuνJ
H
supp u(f) = 0 for all u ∈ C1

0(Ω, R).

Remarks. 1. If the volume of f t is constant, VU(f t) = VU(f) where U := supp u then

certainly
∫

U
u dS = 0, but not conversely.

2. Statement (ii) means that the surface f is a critical point of the functional AU(f) under

the constraint VU(f) = const. Statement (iii) says that for f the first variation of A and

the first variation of V are parallel, δJ(f) = δA(f) + 2HδV (f) = 0, meaning that 2H can

be considered a Lagrange parameter of our variational problem under a constraint.

Proof. Throughout the proof we set U := supp u and write δ for δuν .

“(i) ⇒ (iii):” This follows from the fact that (30) has no first order term.

“(iii) ⇒ (ii):” Consider u ∈ C1
0(Ω, R) with

∫
u dS = 0. Then u is volume preserving in the

sense δV (f) =
∫

u dS = 0 and so, as desired,

δA(f) = δJH(f)− 2H δV (f) = δJH(f) = 0

“(ii) ⇒ (i):” Suppose that

(31) 0 = δA(f) = −2

∫
uH dS for all u with

∫
u dS = 0.

We claim that the mean curvature H(x) of f at x must be constant on Ω. If not, there are

x1, x2 ∈ Ω such that H(x1) > H(x2). By continuity, we can assume that for some r > 0,

ε > 0 we have

H(x) > c+ε for all x ∈ B1 := Br(x1) and H(x) < c−ε for all x ∈ B2 := Br(x2),

and that the closure of these balls is contained in Ω.

Pick a bump function ϕ ∈ C1
0

(
Br(0), [0,∞)

)
which is positive at 0 and let ϕi(x) := ϕ(x−xi)

for i = 1, 2. Then

u(x) :=
1√

det g
ϕ1(x)− 1√

det g
ϕ2(x)

is in C1
0(Ω, R) and satisfies on the one hand∫

Ω

u dS =

∫
B1

ϕ1 dλ−
∫

B2

ϕ2 dλ > 0
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and on the other hand∫
Ω

uH dS =

∫
B1

H(x)ϕ1(x) dλ−
∫

B2

H(x)ϕ2(x) dλ

> (c + ε)

∫
B1

ϕ1(x) dλ− (c− ε)

∫
B2

ϕ2(x) dλ = 2ε

∫
Br(0)

ϕ(x) dλ 6= 0,

in contradiction to (31) �

Remark. Consider a soap bubble which is in equilibrium. Variations of the bubble arise

physically by small fluctuations caused by air streams, little motions, etc. The mean cur-

vature H of a soap film also has a physical meaning. To see this, consider first an elastic

curve. Its curvature κ(t) corresponds to a force per length. Similarly, for a surface with

surface tension, there is a resulting force (per area) at a given point p, which is given by

the sum of the principal curvatures κi(p),

H =
1

2
(κ1 + κ2) ∼

force

area
.

To make this precise, we would need to integrate normal curvatures over direction space

and see that the integral equals the mean curvature. So H(p) is a force per area, or a

pressure, created by the geometry. If the surface is in equilibrium, the pressure must be

balanced by an ambient pressure difference. Thus H(p) agrees with the pressure difference

to the two side of the interface. If the interface separates gases or fluids, this pressure

difference is constant at each point of the surface, and so H must be constant.

2.8. Stability. Our expansions for area and volume contain second order information. We

can use this information to decide if a surface is a local minimum for the area or for J . To

deal with both cases, let F stand for either A or J ; it could be more general.

Definition. A surface f ∈ C1(Ω, Rn+1) is called a local minimum of a functional F if for

all u ∈ C1
0(Ω, R) there exists t0 > 0 such that the normal variation f t = f + tuν satisfies

for U := supp u

(32) FU(f) ≤ FU(f + tuν) for all |t| < t0.

In particular, (32) holds for f an absolute minimum of F , that is in case

FU(f) ≤ FU(f̃) for all f̃ ∈ C1(Ω, Rn+1) with U := supp(f − f̃) ⊂⊂ Ω.

However, absolute minima are difficult to detect with the methods of analysis, while local

minima are standard: From one-dimensional analysis it is known that for a critical point

with f ′(x) = 0 the condition f ′′(x) > 0 implies local minimality, while a local minimum

implies f ′′(x) ≥ 0. Similarly for our infinite dimensional function space C1(U, R):
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Theorem 14. (i) If f is critical for the functional F , and the second variation satisfies

δ2
uνFU(f) :=

d2

dt2
FU(f + tuν)

∣∣∣
t=0

> 0 for all 0 6≡ u ∈ C1
0(Ω, R) where U = supp u,

then f is a local minimum for F .

(ii) At a local minimum f of the functional the second variation satisfies δ2
uνFU(f) ≥ 0 for

all u ∈ C1
0(Ω, R).

Proof. The proof follows immediately from the expansion

FU(f t) = FU(f) + tδuνFU(f) + 1
2
t2δ2

uνFU(f) + O(t3).

Since δFU(f) = 0, the second order term dominates the expansion. �

Theorem 15. Suppose f has constant mean curvature H and let U = supp u.

(i) Then the second variation of area at f is

(33) δ2
uνAU(f) =

∫
U

∥∥∇u
∥∥2

+ u2K dS

(ii) The second variation of the functional J at f is

(34) δ2JH
U (f) =

∫
U

‖∇u‖2 dS − 2

∫
U

(2H2 −K)u2 dS

for all u ∈ C∞
0 (Ω, R), where H, K are mean and Gauss curvature of f .

The proof is immediate from (21) and (29).

Remarks. 1. Note the obvious sign of the gradient term: ‖∇u‖2 = 1
det g

g
((−∂1u

∂2u

)
,
(−∂1u

∂2u

))
≥ 0.

On the other hand −u2(κ2
1 + κ2

2) ≤ 0.

2. We can rewrite 2H2 −K in terms of principal curvatures:

2H2 −K =
1

2

(
κ1 + κ2

)2 − κ1κ2 =
1

2

(
κ2

1 + κ2
2

)
and so (34) also reads

(35) δ2JH
U (f) =

∫
U

‖∇u‖2−u2(κ2
1 + κ2

2) dS =

∫
‖∇u‖2 − ‖B‖2u2 dS.

The second form of the integral, which is true in general dimension, involves the squared

Riemannian norm of the second fundamental form

(36) ‖B‖2 = κ2
1 + · · ·+ κ2

n =
∑
ij

(gijbij)
2.

In a general ambient manifold the right hand side of (34) must also contain the term

−u2 Ric(ν), see, e.g., a paper by Barbosa/do Carmo.
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Example. A plane is a minimal surface which is a local minimum for area as

δ2A = t2
∫
‖∇u‖2 + u2K dS = t2

∫
‖∇u‖2 dS > 0 for u 6= 0

It does not follow from our variation methods, but it is true that it is an absolute minimum

for area (why?).

2.9. Outlook on stability. Here I collect some interesting material which I should have presen-
ted systematically and with proofs.

For a surface f let us impose the constraint that it encloses a fixed volume. As we know, then f
is a critical point of the area functional if and only if it has constant mean curvature. The second
variation of area (33) can then be computed to be (how?)

(37) δ2uνAU (f) =
∫

U
‖∇u‖2 − ‖B‖2u2 dS for u ∈ C∞0 (U,R) with

∫
U
u dS = 0.

That is, its form agrees with (34); note that the condition on u means that the variation is volume
preserving up to first order. (To understand the problem, consider a finite dimensional analogy:
Suppose we have a function A : Rn → R and we know the second derivative, i.e., the Hessian
d2A. If we restrict the function A to a constraint hypersurface S := {x ∈ Rn : ϕ(x) = 0}, then
the Hessian d2A|S will change due to curvature of the constraint hypersurface S. In our case, S
would be defined by the volume constraint.)

Using integration by parts we can rewrite the second variation formulas (34) or (33): Let ∆f be
the Laplace-Beltrami operator for f , see the definition in Sect. 7.2 below. Then

∫
‖∇u‖2dS =

−
∫
u∆fu dS, and so

(38) δ2uνAU (f) = −
∫

U
u∆fu+ ‖B‖2u dS

A surface f is called stable for area under a volume constraint, if (37) or (38) is ≥ 0 for all
admissable u.

This sense of stability allows to explain the results of soap bubble experiments. First, the only
observed single bubbles are round spheres:

Theorem (Barbosa/Do Carmo). Spheres are the only compact surfaces which are a minimum
of area for given volume.

One part of this claim is that on the sphere, (38) ≥ 0 for all volume preserving u. This follows from
decomposing u into eigenfunctions (spherical harmonics) of the operator ∆f + ‖B‖2 = ∆f + n

on the sphere. The first eigenfunctions on the sphere are the constants; they violate the volume
constraint. The second eigenspace of dimension n + 1 comes from restricting linear functions to
the sphere. These functions are induced by translations of the sphere and so should not change
area but satisfy the volume constraint. Indeed, they have eigenvalue n and so (38) vanishes. All
other eigenfunctions have larger eigenvalues, meaning that (38) is positive. Using the fact that
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eigenfunctions for different eigenvalues are pairwise orthogonal, any volume preserving u must be
a linear combination of eigenfunctions with eigenvalue ≥ n, and so (38) is nonnegative. The other
part of the proof is to show that no other compact surface has the property that (38) is positive
for volume preserving u.

Another interesting surface to consider is the cylinder of radius 1/(2H) with mean curvature
H > 0 and ‖B‖ = 1/(2H). From soap bubble experiments it can be observed that long cylinders
are not stable for area under a volume constraint: Cylinders separate into spheres (bubbles).
This instability is called the Rayleigh instability. In fact, this phenomenon is also observed when
water comes out of a pipe, tap, or fountain: First the shape is cylindrical, but quickly drops
separate. Since on a cylinder, the Laplace-Beltrami operator agrees with the standard Laplacian,
this is particularly easy to check by computation: If the cylinder has height 2π, then the variation
function u(x, y) = sin(λy), for y ∈ [0, 2π] has 0 boundary values, satisfies the volume contraint,
and proves the claim (exercise!).

Remark. The first variation of H can also be computed. It turns out that the mean curvature
Ht = H(f + tuν) is

Ht = H +
1
2
(∆f + ‖B‖2)tu+O(t2)

(see, for instance a paper by Böhme and Tomi, 1973). This is the starting point for various recent
constructions of surfaces with constant mean curvature by so-called perturbation techniques. In
the simplest case, when the operator ∆f + ‖B‖2 is positive, the implicit mapping theorem in
Banach spaces does the job. If the operator has kernel, this strategy becomes more delicate, but
is still managable.

2.10. Problems.

Problem 2 – Parallel surfaces of a cylinder:

Let C(r) be a cylinder in R3 with radius r.

a) Show that for any pair of points p, q ∈ C(r) there is an isometry of R3 which maps p to q (is
it unique?). Conclude that the Gauss curvature is constant.

b) Consider the cylinder Ch(r) of radius r with height h (without the bounding disks). Insert the
area of Ch(r+ t) and Ch(r) into the expansion of area for parallel surfaces and conclude that
K must vanish.

Problem 3 – Determinant expansion:

Which orders of t can the term O(t3) denote in the expansion of the determinant (23)?

Problem 4 – Graphs and minimality:

Let the graph (x, y, u(x, y)) represent a minimal surface. Examine which of the following graphs
(x, y, ũ(x, y)) are also minimal:
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a) ũ = u+ c for c ∈ R,

b) ũ = cu for c ∈ R,

c) ũ = cu(cx, cy) or ũ = cu
(

x
c ,

y
c

)
for c 6= 0, where the domain is chosen suitably.

Problem 5 – Minimal Graphs:

a) Differentiate the divergence form of the mean curvature equation for graphs to obtain a second
order equation in the standard form

nH =
∑

1≤i,j≤n

aij(x, u,Du) ∂iju.

Compare the result with the formula for n = 2 obtained in class.

b) Prove that the equation is elliptic in the following sense: Suppose u : Ω → R satisfies |∇u| < K.
Then there exists λ = λ(K) such that∑

1≤i,j≤n

aij(x, u,Du) ξiξj > λ|ξ|2 for all ξ ∈ Rn \ {0} and x ∈ Ω.

Problem 6 – Alternative derviation of the first variation of a graph:

Consider a hypersurface f : U → Rn+1 which is a graph, f(x) =
(
x, u(x)

)
. For simplicity, we

assume U is bounded and u ∈ C2(U,R). We set

J(u) :=
∫

U

√
1 + |∇u|2 dx+ n

∫
U
Hudx,

where for now H = H(x) is an arbitrary continuous function.

a) Prove that ∫
U
∂iη dx = 0 for all η ∈ C1

0 (U,R) and each i = 1, . . . , n.

Conclude the law of integration by parts in several variables,∫
U
ϕ∂iη dx = −

∫
U
(∂iϕ)η dx,

provided one of the two scalar functions η, ϕ has compact support and, for ϕ vector valued,∫
U

∑
i

ϕi∂iη dx = −
∫

U
η divϕdx.

b) Calculate the first variation of J , that is,

δηJ(u) :=
d

dt
J(u+ tη)

∣∣∣
t=0

for η ∈ C1
0 (U,R). You obtain the mean curvature equation for a graph in divergence form.

Remark: This is the most elegant derivation of the mean curvature equation for graphs, which
for the case of minimal surfaces, H ≡ 0, goes back to Lagrange. However, this derivation leaves
open that H agrees with the mean curvature.
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Problem 7 – Expansions of volume and J for a cylinder:

As in Problem 2, let Cl(r) be a cylinder of height l > 0 and radius r > 0 (ignore the top and
bottom disks).

a) Compute both sides of the volume expansion for the variation t 7→ Cl(r + t).

b) Compute similarly the expansion for the functional JH where H is the mean curvature of
Cl(r).

Problem 8 – Catenary:

Consider a rope whose endpoints are fixed at two points of R3, under the influence of gravity,
such as an electrical power line between two posts, or a railway catenary. We want to determine
the shape of the rope, the so-called catenary (Kettenlinie).

We consider the vertical R2 containing the two points, and suppose the points are not related by
a vertical translation. Moreover, we suppose the curve can be represented as a graph{

(x, f(x)), x ∈ [0, b]
}
.

For 0 ≤ t ≤ b we consider the portion (x, f(x)) of the curve with 0 ≤ x ≤ t. The tangent vectors
at its endpoints,

T0 :=
(
1, f ′(0)

)
and − Tt := −

(
1, f ′(t)

)
,

correspond to the forces which pull tangentially on the catenary (sketch!). Note that the lengths
of T0,−Tt are chosen in a way that the horizontal components 1,−1 of the forces balance.

a) Formulate the force balance for the vertical components of the forces: The gravity force of the
rope corresponds to ρ > 0 times the length of the portion of the rope considered. It agrees
with the sum of the two vertical components of Ta and Ts.

b) Deduce a differential equation of second order.

c) Solve the differential equation by separation of variables (substition with a hyperbolic functi-
on!). Was Galileo correct, when he claimed in 1638 that the solution curve is a parabola?

d) Here are some suggestions for further thought:
• Does the catenary of a suspension bridge have the same shape? Assume for simplicity that
all the weight is concentrated on the bridge deck, meaning that the wiring is weightless.
• At the mathematics museum at Giessen there is an exhibit modelling the Gateway Arch at
St. Louis, Missouri, see http://en.wikipedia.org/wiki/Gateway_Arch. It can be assembled
from building blocks without any glue. Explain its shape and how the faces of the building
blocks must be chosen.
• Will a self-supporting dome have the same cross-section? (It is claimed that St. Paul’s
Cathedral in London is close to be self-supporting.)
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7. Lecture, Tuesday 4.5.10 (Julia Plehnert)

3. Examples of minimal surfaces

To analyze some examples of minimal surfaces it is convenient to introduce another curva-

ture concept:

Definition. Let f be a hypersurface. The quantity
∫

U
K dS ∈ [−∞,∞] is called the total

curvature [Totalkrümmung] of f .

To give the total curvature a more geometric meaning, we conclude from the definition of

the shape operator

(39) K(p) = det Sp = det
(
−(dfp)

−1dνp

)
= (−1)n det dνp

det dfp

and therefore

det dνp = ±K(p) det dfp ⇒ det(dνT
p dνp) = K2(p) det(dfT

p dfp).

We conclude that the area of the Gauss image in Sn is

AU

(
ν
)

=

∫
U

√
det(dνT dν) dx =

∫
U

|K|
√

det(dfT df) dx =

∫
U

|K| dS.

If f is a two-dimensional minimal surface, the Gauss curvature K = κ1κ2 ≤ 0, hence

(40) −AU

(
ν
) f minimal

=

∫
U

K dS.

Note that our integrals count the area with multiplicity, i.e., taken as often as the spherical

image is attained. Thus the total curvature of a minimal surface is the negative area of the

spherical image, taken with multiplicity. For a general, not necessarily minimal surface,∫
K dS counts the oriented area of the Gauss image with multiplicity.

3.1. Minimal surfaces of revolution: The catenoid. We recall some properties about

surfaces of revolution, which were discussed in detail in the lecture Differentialgeometrie.

Let

(41) (r, h) : I → R+ × R

be a regular curve. We place it in the (x, z)-plane and rotate about the z-axis. The result

is a surface of revolution [Rotationsfläche]

(42) f : I × R → R3, f(t, ϕ) :=
(
r(t) cos ϕ, r(t) sin ϕ, h(t)

)
.
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Lemma 16. For a surface of revolution (42), meridians t 7→ f(t, ϕ) and latitude circles

ϕ 7→ f(t, ϕ) are curvature lines, with principal curvatures

(43) κ1 =
r′h′′ − h′r′′√

r′2 + h′2
3 and κ2 =

1

r

h′√
r′2 + h′2

.

Proof. We compute:

∂1f =

r′ cosϕ
r′ sinϕ
h′

 and ∂2f =

−r sinϕ
r cosϕ

0

 ,

and so the first fundamental form g is

(44) g =

(
r′2 + h′2 0

0 r2

)
⇒ g−1 =

(
1

r′2+h′2
0

0 1
r2

)
.

The normal of the curve,
(−h′

r′

)
, normed and rotated about the z-axis, gives the surface normal

(45) ν =
1√

r′2 + h′2

−h′ cosϕ
−h′ sinϕ

r′

 ;

it is the inner normal if h is increasing. The second derivatives of f are

∂11f =

r′′ cosϕ
r′′ sinϕ
h′′

 , ∂22f =

−r cosϕ
−r sinϕ

0

 , ∂12f = ∂21f =

−r′ sinϕr′ cosϕ
0

 .

We obtain

b11 = 〈∂11f, ν〉 =
r′h′′ − h′r′′√
r′2 + h′2

, b22 = 〈∂22f, ν〉 =
rh′√

r′2 + h′2
, b12 = 〈∂12f, ν〉 = 0.

Note that both g and b are diagonal, so that g−1b is diagonal as well. Hence the coordinate
directions v1 = ∂

∂t and v2 = ∂
∂ϕ are principal curvature directions, and their principal curvatures

are κ1 = g11b11 and κ2 = g22b22. �

Thus a surface of revolution is minimal, 0 ≡ H = κ1+κ2

2
, if and only if

(46) 0 = r(r′h′′ − h′r′′) + h′(r′
2
+ h′

2
).

We call a surface M complete [vollständig] if there is no connected surface (of the same

dimension) containing it as a proper subset. For instance, a plane in R3 is complete, but an

open or closed disk (in R2 or R3) is not. We say a complete surface is a surface of revolution

if it is invariant under rotation (we allow for r = 0).
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Theorem 17 (Bonnet 1860). Each complete minimal surface of revolution is either a plane

or a catenoid

f : R× [0, 2π) → R3, f(t, ϕ) :=
(
r(t) cos ϕ, r(t) sin ϕ, t

)
with r(t) := a cosh

(t− t0
a

)
for t0 ∈ R, a > 0.

(47)

The catenoid was first described by Euler in 1744. The meridian curve cosh is a catenary

(see problem session): This means that we can obtain the catenoid by rotating the shape

of a hanging chain about an axis of a certain distance.

Proof. The special case h ≡ const in (42) solves the zero mean curvature equation (46).

It corresponds to a (horizontal) plane without the point P := (0, 0, h) on the axis; this

surface becomes complete by taking the union with P .

In case h is not identical to a constant there is a point t0 such that h′(t0) 6= 0. Then h is

locally monotone, and by a reparameterization of our generating curve (41) we can assume

that locally h(t) = t. In this case the differential equation (46) becomes

(48) rr′′ = 1 + r′2, r > 0.

This ODE can be solved by a separation of variables, see [O, p.64]. Here, we will only check

that (47) solves the ODE (48). Indeed, a cosh(.) 1
a
cosh(.) = 1 + sinh2(.).

Let us consider the initial values r(0) > 0, r′(0) ∈ R for (48). Writing the initial values

in the form r′(0) = sinh(−t0
a

) with t0 ∈ R and r(0) = a cosh −t0
a

with a > 0 we see that

they are satisfied by the solution family (47). By the uniqueness part of the theorem of

Picard-Lindelöf these are all solutions (the system r′ = R and R′ = (1 + R2)/r is Lipshitz

for r > ε > 0). Moreover, these solutions are maximal, that is, defined for all t ∈ R.

Consequently, any solution of the intitial value problem with h′(t0) 6= 0 for some t0 satisfies

in fact h′(t) 6= 0 for all t.

We have solved all initial value problems for the system (46) and r′2 + h′2 = 1; thus all

solutions are of the claimed type. �

Let us discuss two more properties of the catenoid. First we consider a boundary value pro-

blem. Take a symmetric catenoid, that is, t0 = 0 in (47). A subset of type f
(
[−d

2
, d

2
], [0, 2π)

)
of this catenoid is bounded by two circles of radius cosh τ which have distance d. Does any

such boundary configuration bound a connected subset of some catenoid?

We call two boundary circles coaxial if they are contained in parallel planes, have the same

radius r > 0 and the straight line through their midpoints is perpendicular to the plane;

let the distance be d > 0. A soap film experiment tells us that for the two coaxial circles

to bound a catenoid, they cannot be too far apart, or, the radius cannot be too large. As
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follows from Prop. 2 it is sufficient to study the case r = 1. In our catenoid family (47),

the parameter a corresponds to scaling.

So let us assume two coaxial unit circles are spaced d > 0 apart. By studying the one-

parameter family of scaled catenoids the following is proven in the problem session:

Proposition 18. There is a number dmax = 1.32 . . . such that two coaxial unit circles in di-

stance d bound connected subsets of the following minimal surfaces: two different catenoids

for 0 < d < dmax, just one for dmax, and none for d > dmax.

Consider the following surfaces of revolution, bounded by the two coaxial unit circles in

distance d: A catenoid of smaller area C1(d) and a catenoid of larger area C2(d) exist for

each 0 < d < dmax; they coincide when d = dmax. Moreover, let D be two (disconnected)

disks; in this context the disks are refered to as the Goldschmidt solution. For d < 1.05 . . .,

the catenoid C1(d) has smaller area than the disk area 2π. The area of the catenoid C2(d) is

always larger than the disk. The catenoid C(dmax) is a regular surface with area 2π ·1.19 . . .;

nevertheless, when d is increased further, a soap film will pop. See Nitsche [N, § 515 f] and

Oprea [O, 5.6] for more information.

Let us also determine the total curvature of the catenoid. By (40) we have to consider the

Gauss map:

Proposition 19. The Gauss map of a catenoid with axis direction e3 ∈ S2 is bijective to

S2 \ {±e3}.

Proof. By (45), ν(t, ϕ) = 1
cosh t

(
− cos ϕ,− sin ϕ, sinh t). The xy-projection of ν(t, ϕ) has

angle ϕ + π. The t lines go on the sphere from the south pole (t → −∞) to the north

pole t →∞; they are 1-1 since the third component tanh t is strictly monotone. Thus the

t-lines have an open semicircle as their Gauss image. It follows that t ∈ R, ϕ ∈ [0, 2π)

parameterizes S2 except for ±(0, 0, 1). �

Therefore the total curvature of the catenoid is∫
R×[0,2π]

K(t, ϕ) dS(t,ϕ) = −AR×[0,2π]

(
ν
)

= −4π.

3.2. Ruled minimal surfaces: The helicoid. Let I be an interval and c, v : I → R3 be

two curves. Then the mapping

(49) f : R× I → R3, f(s, t) = c(t) + sv(t).

is called a ruled surface [Regelfläche]. From a strict point of view, we should say ruled

mapping, since f need not be a surface, i.e. immersion, at each (s, t). The curve c is called

the directrix [Leitkurve]. The straight lines s 7→ f(s, t) are the rulings [Regelgeraden] of f ;
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they are asymptote lines. Thus a ruled surface has Gauss curvature K ≤ 0 (wherever

defined). The notion ruled refers to a ruler; the German Regel is a mistranslation of the

French term règle (ruler).

Examples. Many classical surfaces are ruled: So is the circular cylinder or, more generally,

a cylinder over an arbitrary curve, and similarly the cone over a circle or over a general

curve. Note that cones are immersions only excluding their tip. It is known that the shapes

a bent piece of paper in space can attain are locally ruled.

The partial derivatives of f are

(50) ∂1f(s, t) = v(t), ∂2f = c′(t) + sv′(t).

If c′(t) and v(t) are linearly independent for all t ∈ I then f is an immersion on an open

neighborhood U of {s = 0} in R × I. Nevertheless, we will not assume this condition

– instead we will derive it from minimality. We call a point (s, t) of a ruled mapping

nonsingular if f(s, t) is an immersion in a neighbourhood of (s, t); we call f nonsingular,

if it is an immersion for all s ∈ R.

Discovered by Meusnier in 1776, the helicoid is a ruled surface. For instance, we can let c

trace out the z-axis and v rotate in a horizontal plane. This gives an embedding f : R2 →
R3,

(51) f(s, t) := c(t) + sv(t) =

 0

0

ht

+ s

 sin t

− cos t

0

 =

 s sin t

−s cos t

ht

 for h 6= 0.

Here, we assumed that v starts on the negative y-axis at t = 0. The rotation is anticlockwise

for h > 0 (“right helicoid”) and clockwise for h < 0 (“left helicoid”).

One can compute directly that the helicoid (51) is minimal. (Do so if you have never done

it before!) Let us also give a geometric argument, which works without any calculation. At

any given point on the helicoid, the horizontal ruling is an ambient geodesic and hence an

asymptotic direction of the surface. But the orthogonal direction must also be an asym-

ptotic direction, as by construction the helicoid is invariant under 180◦-rotation about the

horizontal geodesic. We note that this argument, based on symmetries, works for helicoids

in any ambient space for which 180◦-rotation about the geodesic ruling is an isometry: for

instance for helicoids in the space forms S3 or H3.

There is a uniqueness theorem for the helicoid:

Theorem 20 (Catalan 1842). Each complete ruled minimal surface is nonsingular and

either the plane or the helicoid.
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Due to time constraints we skip the proof, but it may be found in [DKHW].

The helicoid (51) has the following properties:

• It is simply periodic, that is, any translation by k(0, 0, 2πh), k ∈ Z, leaves it invariant.

• It is symmetric under rotation by any angle ϕ ∈ R followed by a vertical translation by

(0, 0, hϕ).

• The helicoid has infinite total curvature, but total curvature −4π in a fundamental

domain f(R, [0, 2π]).

All but the last property are straightforward. To calculate the total curvature, we point

out a stunning relationship between catenoid and helicoid. To introduce it, we use the

conformal representations.

Theorem 21. Each surface in the associated family

fϑ : R2 → R3, fϑ(x, y) = cos ϑ

cosh x cos y

cosh x sin y

x

+ sin ϑ

 sinh x sin y

− sinh x cos y

y

 ,

where ϑ ∈ R, is minimal. Moreover, f0 parametrizes a catenoid (of waist radius 1) and

fπ/2 a helicoid (with vertical period 2π); for y ∈ [0, 2π) the entire catenoid and a period

of the helicoid is parameterized. All surfaces in the family are isometric, that is the first

fundamental form is independent of ϑ, and the normal is independent of ϑ, too.

All our claims can be verified by calculation. Since catenoid and a fundamental piece of the

helicoid are isometric, they have the same Gaussian curvature and hence the same total

curvature ∫
[0,2π]×R

K(t, ϕ) dS(t,ϕ) = −4π.

The simple periodicity implies that the total curvature of the entire helicoid must be

infinite.

8. Lecture, Thursday 6.5.10 (Julia Plehnert)

3.3. Enneper’s surface has an intrinsic rotation. The minimal surface

f : R2 → R3, f(x, y) =

 x− 1
3
x3 + xy2

−y + 1
3
y3 − yx2

x2 − y2


was discovered by Enneper in 1864. To see it is minimal, let us calculate

fx =

1− x2 + y2

−2xy

2x

 , fy =

 2xy

−1 + y2 − x2

−2y

 .
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Thus

|fx(x, y)|2 =
(
1 + x4 + y4 − 2x2 + 2y2 − 2x2y2

)
+ 4x2y2 + 4x2

= 1 + x4 + y4 + 2x2 + 2y2 + 2x2y2 = (1 + x2 + y2)2 = |fy(x, y)|2

and 〈fx, fy〉 = 0. We conclude

(52) g =

(
(1 + x2 + y2)2 0

0 (1 + x2 + y2)2

)
=

(
(1 + r2)2 0

0 (1 + r2)2

)
,

where r :=
√

x2 + y2. Thus f is conformal, and hence to check it is minimal, by (9) it

suffices to assert ∆f = (−2x + 2x, 2y − 2y, 2− 2) = 0.

To understand the geometry of the Enneper surface, let us first point out that

f(±x, x) =
(
± (x +

2

3
x3),−(x +

2

3
x3), 0

)
,

meaning that the surface contains the two horizontal diagonals. On the other hand, f(x, 0) =

(x − 1
3
x3, 0, x2

)
; at x = 0 is asymptotic to the graph of a parabola, while at infinity it is

asymptotic to the graph of (.)2/3. Since f(±
√

3, 0) = (0, 0, 3), the Enneper surface is not

embedded. In fact, the selfintersections make it hard to visualize (see [DHKW], p.146 for

images, or generate them by yourself!).

To analyse Enneper’s surface at 0 and infinity, we use the polar coordinate representation

f
(
r cos t, r sin t

)
=

 r cos t− 1
3
r3 cos3 t + r3 cos t sin2 t

−r sin t + 1
3
r3 sin3 t− r3 cos2 t sin t

r2(cos2 t− sin2 t)

 =

 r cos t− 1
3
r3 cos 3t

−r sin t− 1
3
r3 sin 3t

r2 cos 2t

 .

To see this, remember cos 3t = Re e3it = Re(eit)3 = Re(cos t+ i sin t)3 = cos3 t−3 cos t sin2 t

and sin 3t = Im e3it = Im(eit)3 = Im(cos t + i sin t)3 = − sin3 t + 3 cos2 t sin t.

Consider the circle γr(t) = (r cos t, r sin t) of radius r > 0. First, when r is small, we have

f
(
γr(t)

)
=
(
r cos t,−r sin t, r2 cos 2t

)
+ O(r3) as r → 0,

meaning that the image circle is asymptotically in the horizontal xy-plane. It is paramete-

rized clockwise. The sign of the z-values alternates four times or every 90◦; it is zero only

on the diagonals.

Second, to study the image of the circle γr(t) for large radius r, note that

f
(
γr(t)

)
=
(
− 1

3
r3 cos 3t, −1

3
r3 sin 3t, r2 cos 2t

)
+ O(r) as r →∞.

In particular, |f(γr(t))| = 1
3
r3+O(r2), meaning that the image “circles” are asymptotically

round. Consequently, the radial projection of the image circle onto S2 reads

f(γr(t))

|f(γr(t))|
=
(
− cos 3t + O(1

r
),− sin 3t + O(1

r
),

3

r
cos 2t + O

(
1
r2

))
as r →∞.
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The third component is small, and so the image of a large circle is again asymptotically a

horizontal round circle. However, it runs 3 times round anticlockwise! The sign of the third

component indicates to which side of the horizontal xy-plane the surface sits: this time it

takes exactly 270◦ for the image to change sign.

To explain an important property of Enneper’s surface, we note that the first fundamental

form (1 + r2)2 id depends on r alone. In geometric language this yields:

Proposition 22. Let Rα denote the rotation of R2 by an angle α ∈ R. The Enneper surface

has an intrinsic rotation, that is f and f ◦Rα are isometric for each α ∈ R.

Imagine a plaster model of Enneper’s surface as well as a copy of the actual surface made

from thin metal; they must represent an embedded portion of the surface, of course. Then

the metal copy can be rotated on the surface; while doing so, it will change shape. This

describes the associated family; it is obtained by rotating Enneper’s surface around the

z-axis.

Brian Smyth in the 1980’s determined all minimal surfaces admitting intrinsic isometries;

precisely Enneper’s surface, as well as certain analogues with higher dihedral symmetry,

have an intrinsic rotation.

Let us mention two more properties:

1. The Enneper surface is algebraic, i.e. there is a a polynomial of 9-th order (see [N, p.77]),

such that the Enneper surface is its zero set. Note that any surface can be represented

implicitely; the point here is that the function is not transcendental but a polynomial.

2. The Gauss map is injective; it misses only the point −e3 ∈ S2. The total curvature is

−4π.

References. [N], p.75–81

3.4. Scherk’s doubly periodic surface. What are the interesting examples of minimal

graphs, f(x, y) = (x, y, u(x, y))? As proven by Bernstein, if u is defined on all of R2, the

only such surfaces are planes (u is linear). Nevertheless there are interesting graphs defined

over certain subsets of the plane.

Along with four other minimal surfaces, Scherk in 1835 described a graph defined over the

open square Q :=
(
− π

2
, π

2

)
×
(
− π

2
, π

2

)
by

u : Q → R, u(x, y) := log
cos y

cos x
.

To prove Scherk’s surface is minimal, let us check it satisfies the mean curvature equation

for graphs (16),

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.
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Indeed, since

ux =
sin x

cos x
, uy = − sin y

cos y
, uxx =

1

cos2 x
, uyy = − 1

cos2 y
, uxy = 0

we have

1 + sin2 y
cos2 y

cos2 x
−

1 + sin2 x
cos2 x

cos2 y
=

cos2 y + sin2 y − (sin2 x + cos2 x)

cos2 x cos2 y
= 0.

The only intersection of the surface with the xy-plane, that is, the only zeros of u, are the

two horizontal diagonals (±x, x, 0). When (x, y) tends to one of the four (open) boundary

edges of the square Q, the function u has limiting values +∞ or −∞. Indeed, if (x, y) →
(π

2
, y0), where |y0| < π

2
, then log cos y − log cos x → log cos y0 +∞ = ∞.

It remains to discuss limits at the four vertices. We claim that the closure of the graph

contains the four vertical lines (±π
2
,±π

2
)× R. To see that, fix λ > 0 and note

u
(π

2
− η,

π

2
− ξ
)

= log
sin ξ

sin η
= log

ξ − 1
3!
ξ3 + . . .

η − 1
3!
η3 + . . .

→ log λ as ξ = λη ↘ 0.

But log : (0,∞) → R is surjective, implying that this limit can attain any value in R. This

shows that any point on the four vertical lines is a limit point of a sequence of points on

the graph.

The surface extends to all (x, y) such that 0 < cos y
cos x

< ∞, that is, to the black squares

of a suitable chequerboard. Let us consider the closure of this surface. This means to join

the set of vertical lines over the vertices of this chequerboard. The closure is complete.

One can show that the extended surface is smooth at the vertical lines, and that its mean

curvature vanishes. Thus we have constructed a complete minimal surface. This surface is

doubly periodic, i.e. invariant under any translation by (k · 2π, l · 2π, 0), (k, l) ∈ Z2.

References. [N] p.63/64, [DHKW] p.151–159

3.5. Problems.

Problem 9 – Geometric Intuition:

a) Consider a catenoid with vertical axis. How does it intersect horizontal planes, vertical planes
through the origin, (centered at the origin)?

b) How does a helicoid with vertical axis intersect horizontal planes, vertical planes through the
origin, a sphere of radius r (centered at the origin)?

c) How does the xy-plane intersect Enneper’s surface?
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Problem 10 – Scaled catenoids:

Consider a catenoid with vertical axis,

f : R2 → R3, f(t, ϕ) :=
(
cosh t cosϕ, cosh t sinϕ, t

)
,

positioned symmetrically w.r.t. the horizontal xy-plane. Then we scale the catendoid, fλ(t, ϕ) :=
λf(t, ϕ), where λ > 0, and denote the image surface by Mλ := fλ

(
R, [0, 2π)

)
⊂ R3.

a) Determine an open cone K ⊂ R3 about the z-axis with tip at the origin, which is maximal
regarding the following property: For all λ > 0 and x, y ∈ R2 is fλ(x, y) 6∈ K. What is the
aperture angle α of K?

b) Determine the number dmax > 0 such that any pair of coaxial unit circles is the boundary of
a connected set of some catenoid Mλ precisely if the distance satisfies d ≤ dmax. Express dmax

in terms of α.

c) Do the catenoids Mλ have a limit for λ → ∞, that is, can a sequence of points λf(tλ, ϕλ)
converge?

d) Let Lx be the vertical line Lx := {(x, 0, z), z ∈ R}. Prove: The intersectin point (x, 0, z) of the
upper catenoid half fλ

(
[0,∞), 0

)
with the line Lx defines a unique solution z = z(λ, x) ≥ 0

for 0 < λ ≤ x.

e) The function λ 7→ z(λ, x) can be extended continuously to 0 by limλ→0 z(λ, x) = 0.

f) Two coaxial unit circles in distance d < dmax are the boundary of a connected subset of a
catenoid Mλ for exactly two values of λ.

g) Use part e) to discuss the limit of Mλ for λ→ 0. That is, find a maximal subset M of R2 with
the property: For each p ∈M there is a sequence pλ ∈Mλ, such that limλ→0 pλ = p.

h) Consider the convergence of the previous part. Do the normals converge as well (so-called
C1-convergence)? Hint: How does the normal of Mλ behave at the intersection with Lx?

9. Lecture, Tuesday 11.5.10: Rob Kusner (Univ. of Mass. at Amherst, USA)

Problem 11 – Force balancing for the catenoid:

Let M be a minimal surface, and K ⊂M be a compact subset with piecewise smooth boundary
(and non-empty interior); the boundary ∂K then is the union of smooth loops. Rob Kusner
discussed in his lecture the principle of force balancing [Kräftegleichgewicht]: the total force

F (∂K) :=
∫

∂K
η ds = 0.

Here η is the exterior conormal, that is, η is a unit tangent vector of M which is normal to ∂K.
We now apply this principle specifically to minimal surfaces of revolution.

a) Specify K = K(t) in a way to prove that for a minimal surface of revolution f(t, ϕ) =(
r(t) cosϕ, r(t) sinϕ, h(t)

)
the function t 7→

∫
C(t) η ds over the circle C(t) = {f(t, ϕ) : 0 ≤ ϕ <

2π} is constant.
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b) Check with the explicit representation of the catenoid r(t) = a cosh(t/a) that the force is
independent of the circle chosen.

c) Conversely, derive the ODE and perhaps the representation of the catenoid (or plane) from
the principle of force balancing.

The same principle for nonzero constant mean curvature can be used to give a qualitative discus-
sion of the Delaunay surfaces. It also applies to higher dimensions or other ambient spaces.

Problem 12 – Force balancing for Scherk’s doubly periodic surface:

Consider Scherk’s doubly periodic surface over one square, that is, the graph u(x, y) = log(cos y/ cosx)
over (x, y) ∈ (−π/2, π/2)2.

a) What is the vertical component of the force over the intersection of a horizontal plane Pz at
height z with the surface (choose η with η3 ≥ 0)? Do not engage in a calculation! What can
you say about the horizontal component of the force for the intersection curve with a vertical
axis-parallel plane?

b) Scherk’s surface is a graph over the square (−π/2, π/2)2 with boundary values alternating
between +∞ and−∞. Similar surfaces exist over more general quadrilaterals [Vierecke]. Derive
a necessary condition the quadrilaterals must satisfy from force balancing. (The condition is
sufficient by work of Jenkins and Serrin from the 60’s.)
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10. Lecture, Tuesday 18.5.10

4. Constant mean curvature surfaces of revolution

We discuss the surfaces of revolution with nonzero constant mean curvature which were

first described by Delaunay 1841. I used lecture notes by K. Steffen to prepare this section.

Other references include: Oprea, Differential Geometry, Prentice Hall 1997, Sect. 3.6; J.

Eells, The surfaces of Delaunay, Math. Intelligencer 1997; and web sites (see below).

4.1. Analytic discussion of the ODE. From (43) we recall that a surface of revolution

f : I × R → R3, f(t, ϕ) :=
(
r(t) cos ϕ, r(t) sin ϕ, h(t)

)
, r > 0,

has mean curvature

(53) 2H =
r′h′′ − h′r′′

(r′2 + h′2)3/2
+

1

r

h′√
r′2 + h′2

.

For physics reasons, namely by the principle of force conservation,

(54) t 7→
(

2πr
h′√

r′2 + h′2

)′
is constant for H ≡ 0. Indeed, the generating curve (r, h) has tangent vector (r′, h′)/

√
r′2 + h′2

and along a circle of radius r(t) the vertical component h′√
r′2+h′2

is constant. The integral

of the conormal over the circle of length 2πr agrees with the integral over the constant

vertical component, and so 2πr · h′√
r′2+h′2

is constant in r.

Let us calculate (54) under the assumption that H is constant:(
rh′√

r′2 + h′2

)′
=

(r′h′ + rh′′)(r′2 + h′2)− rh′(r′r′′ + h′h′′)

(r′2 + h′2)3/2

=
r′h′(r′2 + h′2) + rh′′r′2 − rh′r′r′′

(r′2 + h′2)3/2

= rr′
( r′h′′ − h′r′′

(r′2 + h′2)3/2
+

h′

r
√

r′2 + h′2

)
= 2rr′H = (r2H)′

This implies, upon integration,

(55)
rh′√

r′2 + h′2
−Hr2 = const .

Thus from the second order equation (53) we have derived the first order equation (55); it

is called a first integral of the second order ODE.
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Remark. We can identify (55) with a geometric quantity. After multiplying with 2π the first

term becomes the integral of the conormal over the circle C(r) generated by (r(t), h(t)),

while the second term becomes 2H times the integral of the normal over the disk D(r) of

area πr2 spanned by this circle. That is,

r 7→ 2π · (55) =

∫
C(r)

η ds− 2H

∫
D(r)

ν dA

This result can be shown to hold in much larger generality. Note also that for H ≡ 0 our

formula reduces to the integral of the conormal being preserved.

Let us get back to (55). As long as h′ 6= 0, we could parameterize solution curves as

h(t), say with h′ > 0, such that r√
r′2+h′2

− Hr2 becomes a constant, say a, and so the

equation will be separable. However, only for H ≡ 0 does this lead to the explicit solutions

r(t) = a cosh((t− t0)/a), which are catenoids, or to the planes h ≡ const.

Instead we will choose the curve (r, h) parameterized such that

h′(t) = r(t),

and we assume the mean curvature H ∈ R \ {0} is constant. This is possible on solution

arcs with h′(t) 6= 0. Note that the case h′ ≡ 0 will not arise for H 6≡ 0. Assuming the

special parameterization, we take the derivative of (55),

(56) 0 =

(
r

r√
r′2 + r2

−Hr2

)′
= r

(( r√
r′2 + r2

− 2Hr
)′

+ r′
1√

r′2 + r2

)
.

On the other hand,(
r′√

r′2 + r2

)′
=

r′′(r′2 + r2)− r′(rr′ + r′r′′)

(r′2 + r2)3/2
=

r′′r2 − r′2r

(r′2 + r2)3/2
= r

r′′h′ − h′′r′

(r′2 + h′2)3/2

(53)
=

h′√
r′2 + h′2

− 2Hr =
r√

r′2 + h′2
− 2Hr

(57)

To eliminate h, let us now take one more derivative of (57) and replace the right hand side

using (56) divided by r: (
r′√

r′2 + r2

)′′
= − r′√

r′2 + r2
.

Up to translation in t, this second order ODE takes the solutions

(58)
r′√

r′2 + r2
= −ε sin t,

where ε ∈ R is an integration parameter. Differentiating (58) and rewriting the left hand

side in terms of (57) gives

(59)
r√

r′2 + r2
= 2Hr − ε cos t.



36 K. Grosse-Brauckmann: Surfaces of constant mean curvature, SS 10

To eliminate r′ from the equation we add the squares of (58) and (59):

1 =
r′2 + r2

(
√

r′2 + r2)2
= ε2 sin2 t + (2H)2r2 + ε2 cos2 t− 2(2H)rε cos t

⇔ 0 = 2Hr2 − 2ε(cos t)r +
1

2H
(ε2 − 1).

This quadratic equation in r has the solutions

(60) r1,2 =
ε cos t

2H
± 1

2H

√
ε2 cos2 t + 1− ε2 =

ε

2H
cos t± 1

2H

√
1− ε2 sin2 t.

We may assume that ε ≥ 0 and H > 0, since a sign change of the first term can as well be

affected by t 7→ t + π. We want to discuss maximal solution branches in terms of ε and H.

Please check that the above calculations can be reversed so that r(t) indeed solves the

equation for constant mean curvature. Except for the special cases ε = 0 or 1, the solutions

h(t) =
∫ t

r(s) ds have no elementary representation. Hence we can only give a qualitative

discussion.

• For ε = 0 we must have the +-sign in (60). The solution r(t) ≡ 1
2H

is defined for t ∈ R
and generates a cylinder of radius 1

2H
.

• For ε = 1 we also must have the +-sign, and a solution with r > 0 can only be defined

on intervals such as t ∈ (−π/2, π/2):

r(t) =
1

2H
cos t +

1

2H
| cos t| = 1

H
cos t

From h′(t) = r(t) we obtain h(t) = 1
H

sin t, so that a sphere of radius 1
H

is parameterized.

• For 0 ≤ ε < 1 we have again the +-sign, and the solution (60) is defined for all t ∈ R.

The solutions generate the unduloids. They are simply periodic and, due to the fact h is

increasing on the ODE solution, the unduloids are embedded. The value of r varies from

rmin = (1 − ε)/2H (at t = ±π) to rmax = (ε + 1)/2H (at t = 0), that is, the difference is

rmax − rmin = ε/H. The unduloid with ε = 0 agrees with a cylinder.

• For ε > 1 there are still smooth solution curves
(
r(t), h(t)

)
generating smooth peri-

odic, surfaces of revolution with self-intersections, called nodoids. Unfortunately, our ap-

proach does not yield a continuous parameterization of the generating ODE-curves; in-

stead, different arcs must be patched together. Indeed, for ε > 1 the map t 7→ h(t) has

critical points and so no longer is monotone along solution curves. There are two geo-

metrically different solution branches, namely for t ∈ (− arcsin(1/ε), arcsin(1/ε)) and for

t ∈ (− arcsin(1/ε) + π, arcsin(1ε) + π); the first term in (60) has a different sign on these

two intervals. If a singular point with |t| = arcsin(1/ε) is approached, then h′ → 0, which

means the tangent (r′, h′) becomes horizontal. Given our description, we need to piece to-

gether smooth arcs, after vertical translation. This gives a complete generating curve. For

ε →∞ the generating curve converges to the circle of radius 1/|H| at ∞ (check details!).
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Using the local uniqueness theorem shows that zeros of h′ are isolated when H 6= 0, and

that through each point there is at most one solution arc. This shows that we have arrived

at a complete description of all constant mean curvature surfaces of revolution.

11. Lecture, Thursday 20.5.10

4.2. Geometric discussion of the ODE. Although the ODE for the generating curve

of a constant mean curvature surface of revolution has no explicit solution, there is a very

explicit geometric description of its solutions, which is due to Delaunay and Sturm.

To set it up, we need the notion of a roulette [Rollkurve]. Consider a curve c : I → R2,

together with the origin of the C-plane. When the curve roles (tangentially) along the

y-axis of the (r, h)-plane, the origin traces out another curve γ(t) : I → R2 which we want

to analyze now.

To set up the problem, we describe the roling in terms of a family of motions. We decompose

the motion into translation and rotation; to describe the rotation it is convenient to use a

complex model for the plane. Thus we have

(61) Bt : C → C, Bt(w) := γ(t) + eiϕ(t)w.

The motion Bt is subject to the following conditions:

1. The point c(t) is mapped to some point iσ(t) ∈ iR on the y-axis. Since the roling is

without slip [Schlupf], the distance travelled by σ agrees with arclength of c.

2. The image of c is tangential to the y-axis.

Thus B is defined by

Bt(c(t)) = iσ(t) := i

∫ t

|c′|, subject to eiϕ(t)c′(t) ∈ iR.

Our goal is to determine γ(t) := Bt(0).

It becomes easier to describe γ if we assume that c has a curvature with one sign, that is, on

locally strictly convex arcs. Then c′(t) is locally injective on S1 and we can reparameterize

such that

c′(t) = |c′(t)|e−it,

by invoking the one-dimensional inverse function theorem. Clearly, ϕ(t) = π/2 + t and so

(62) γ(t)
(61)
= Bt(c(t))− ei(π/2+t)c(t) = i

(
σ(t)− eitc(t)

)
⇒ eitc(t) = σ(t) + iγ(t).

From this we conclude

γ′(t) = iσ′ + eitc− ieitc′ = i|c′|+ eitc− i|c′| = iγ + σ.

Taking real and imaginary parts yields the first formula of the following statement:
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Lemma 23. Let c : I → R2 be a curve with positive curvature, parameterized such that

c′(t) = e−it|c′(t)|, and let σ(t) =
∫ t |c′| be arclength of the curve c(t). Then the roulette

γ(t) = (r(t), h(t)) : I → R2 of the point 0 ∈ R2 satisfies the ODE system

h′ = r, r′ = −h + σ

and c has the representation

(63) c(t) = r′e−it + ire−it.

Proof. It only remains to prove the second representation:

c(t)
(62)
= ie−itγ + e−itσ = ie−it(r + ih) + e−itσ = (−h + σ)e−it + ire−it

�

Theorem 24. The generating planar curves for the Delaunay surfaces of revolution with

constant mean curvature H 6= 0 are roulettes of a focus of the conic sections with long semi

major-axis a = 1
|H| and excentricity ε = 1

a

√
a2 + b2.

Hence the unduloids arise from ellipses and the nodoids from hyperbolas. In the latter case,

the branches of the hyperbola switch in the asymptotic position, see

http://www.mathcurve.com/courbes2d/delaunay/delaunay.shtml

Examples. 1. A roling circle of radius a = 1
2H

generates the cylinder of mean curvature H.

2. In the case b = 0, the ellipse degenerates to a segment of length 2a = 1
H

with the focus

in one of the endpoints. The roulette is a chain of circles. As long as the segment rotates

about the focus, the roulette is constant.

Proof. The polar representation c(t) = ρ(ϑ(t))eiϑ(t) of a conic section with a focus at the

origin is

(64) ρ(ϑ) =
`

1± ε cos ϑ
.

Here x2

a2 ± y2

b2
= 1 is the equation of the ellipse (+) or hyperbola (−), with two semiaxes

of lengths a ≥ b. The eccentricity is ε =
√

a2 ± b2/a and ` = b2/a. See, for instance,

http://en.wikipedia.org/wiki/Conic_section Note that replacing cos ϑ by sin ϑ in

(64) only means a rotation of the conic by 90 degrees.

We will verify by calculation that the generating curve of a Delaunay surfaces is a roulette

of a curve with the above polar representation.
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First we calculate

1√
r′2 + r2

(59)
= 2H − ε cos t

r

(60)
= 2H − ε cos t

ε
2H

cos t + 1
2H

√
1− ε2 sin2 t

= 2H −
ε cos t

(
ε

2H
cos t− 1

2H

√
1− ε2 sin2 t

)
ε2−1
(2H)2

=
2H

ε2 − 1

(
ε2 − 1− ε2 cos2 t + ε cos t

√
1− ε2 sin2 t

)
=

2H

1− ε2

(
1− ε2 sin2 t− ε cos t

√
1− ε2 sin2 t

)
.(65)

To simplify this expression, let us consider the polar angle ϑ of c, as given by (63):

ϑ(t) := arg c(t) = arg
(
r′e−it + ire−it

)
.

For a unit vector w we have sin arg(w) = Im w, and so

sin ϑ = Im arg(. . .) =
Im
(
r′e−it + ire−it

)
√

r′2 + r2
=
−r′ sin t + r cos t√

r′2 + r2

(58)(59)
= ε sin2 t + 2Hr cos t− ε cos2 t

2H cos t·(60)
= ε sin2 t + cos t

√
1− ε2 sin2 t,

which rewrites the last two terms of (65).

Let us now combine these results. In general, the polar representation of c is c(t) = ρ(t)eiϑ(t),

and in our case

c = |c|ei arg c (63)
=
√

r′2 + r2 eiϑ =
1

2H
(1− ε2)

1− ε sin ϑ
eiϑ.

But this means we have written c(t) = ρ(ϑ(t))eiϑ(t), and the representation for ρ is the polar

representation of a conic section (64), where sin ϑ replaces cos ϑ and ` = 1
2H

(1− ε2). �

Corollary 25. The period of an unduloid is the circumference of the generating ellipse,

hence an elliptic integral.

However, arclength of the generating curve of a Delaunay surface is integrable and turns

out to be π/H for a period.

4.3. Outlook. In this context, let us mention two theorems by Korevaar, Kusner, Solomon,

which we will discuss in Sect. 7:

1. A properly embedded annulus with constant mean curvature H 6= 0 is a Delaunay

unduloid. That is, topology implies geometry.

2. An end is a proper immersion of the punctured disk D \ {0}. If an end is properly

embedded and has mean curvature H 6= 0 it is asymptotic to an unduloid.

Similar statements hold for H ≡ 0, when ends are asymptotically catenoids or planes.
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While the surfaces of revolution with nonzero constant mean curvature are thus deter-

mined, we could also look for constant mean curvature analogues of the other minimal

surfaces we considered:

• Cmc surfaces with an interior rotation were determined by B. Smyth. This case also

reduces to an ODE, but the discussion is much more involved.

• Ruled cmc surfaces: Only the cylinder.

• There are also cmc surfaces with screw motion isometries. These are discussed in Ken-

motsu’s book as the solution of the appropriate ODE; there is a more elegant description

as surfaces in the associated family of the Delaunay surfaces.
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5. Maximum principle and Alexandrov theorem

The maximum principle is the most important tool to analyse surfaces with constant

mean curvature. We introduce it here gradually, starting with harmonic functions, then

generalizing to linear elliptic equations, and to constant mean curvature surfaces. The goal

of this section is a theorem by Alexandrov characterizing the spheres as the unique compact

embedded surfaces with constant mean curvature.

References: The various forms of the maximum principle are contained in [Gilbarg-Trudinger].

For the Alexandrov theorem see [Spivak IV, Ch.9, Add. 3] or [Hopf, Ch. VII, p.147ff].

5.1. Harmonic functions. Let us look first at the model case for an elliptic equation.

This is the Laplace equation ∆u = 0, whose solutions u ∈ C2 are called harmonic.

Examples of harmonic functions include:

1. Constant and linear functions,

2. Real or imaginary parts of holomorphic functions,

3. functions like x2 − y2 are harmonic,

4. coordinate functions of minimal surfaces in conformal parameterization, by (9).

A crucial property of harmonic functions is the (weak) maximum principle:

Proposition 26. Let U ⊂ Rn be a bounded domain and u ∈ C2(U) ∩ C0(U). If u is

subharmonic, ∆u ≥ 0, the maximum principle holds,

sup
∂U

u = sup
U

u.

Similarly, for u superharmonic, ∆u ≤ 0, the minimum principle inf∂U u = infU u holds.

Note first that for a continuous function supU u = supU u. Second, the boundedness of U

is essential – find a counterexample for U unbounded!

Proof. Step 1: Consider for ε > 0 the auxiliary function

v(x) := u(x) + ε|x|2.

Then ∆v = ∆u + 2nε > 0 for all x ∈ U .

Step 2: On the compact set U , the continuous function v takes a maximum at y = y(ε) ∈ U .

Suppose that y is an interior point of U . Then for each i the restriction v(y + tei) has a

maximum and so ∂iiv(y) ≤ 0. Summing, we find ∆v(y) ≤ 0, in contradiction to ∆v > 0.

Consequently, y ∈ ∂U .
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Step 3: Since ε|x|2 is non-negative we have

sup
U

u ≤ sup
U

(
u + ε|x|2

)
≤ sup

∂U

(
u + ε|x|2

)
for all ε > 0.

But ε|x|2 is bounded on U , and so the claim follows. Similarly for the minimum. �

Another way to derive the maximum principle is by using a surprising property of harmonic

functions: Each value u(x) is the mean of the function u over any ball Br(x) ⊂ U , that is,

u(x) = 1
|Br(x)|

∫
Br(x)

u(y) dy, see [GT, Thm.2.1]. This property does not generalize to the

more general elliptic equations, so we do not discuss it any further here.

12. Lecture, Tuesday 25.5.10

The most important application of the maximum principle is to show the uniqueness of

the Dirichlet problem to Poisson’s equation:

Proposition 27. Let U be a bounded domain and f ∈ C0(U, R). Then any two solutions

u1, u2 ∈ C2(U, R) ∩ C0(U, R) to the Poisson equation

∆u(x) = f(x) for all x ∈ U with u1(x) = u2(x) for all x ∈ ∂U,

coincide.

Proof. The function v := u1−u2 satisfies ∆v ≡ 0 and has boundary values v = u1−u2 = 0.

Thus by Proposition 26 we have

sup
U

v = sup
∂U

v = 0, and inf
U

v = inf
∂U

v = 0,

so that v = u1 − u2 ≡ 0 on U . �

It is a much more difficult task to construct such solutions. For special domains U , like

the ball or a half-space, there are explicit formulas. In general, however, abstract existence

schemes must be used (“Perron process”, see [GT] Sect. 2.8).

Let us conclude this section with an example of a more general equation which does not

satisfy a maximum principle: Consider the eigenvalue problem

∆u + λu = 0 for λ > 0,

where u has zero boundary values. If we let U be the cube (0, π)n then the functions

u(x) := sin(k1x1) · . . . · sin(knxn) with k1, . . . , kn ∈ N

have zero boundary values and satisfy ∆u +
(
k2

1 + . . . + k2
n

)
u = 0. Clearly, u ≡ 0 also

solves the equation. So whenever λ agrees with a sum of n squared natural numbers,

there are non-vanishing solutions of the equation. They violate the maximum principle as

well as uniqueness. Functions satisfying ∆u = λu are called eigenfunctions of the Laplace
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operator ∆; we have seen that for the cube U the discrete sequence of numbers {
∑n

i=1 k2
i :

ki ∈ N} ⊂ R is contained in the point spectrum of ∆.

References: [GT], Sect. 2

5.2. Weak maximum principle for elliptic equations. On our way to the minimal

surface equation we introduce more general equations which behave much alike the Laplace

equation. Our class can be shown to include the Laplacian equation after a change of

variables, and so again we expect the maximum principle to hold.

Definition. A linear partial differential operator of second order is given by

(66) Lu(x) :=
n∑

i,j=1

aij(x) ∂iju(x) +
n∑

k=1

bk(x) ∂ku(x) = trace(A d2u) + 〈b,∇u〉

where aij, bk ∈ C0(U, R) such that the matrix A = (aij) is symmetric and b = (b1, . . . , bn)

is bounded on U . The operator L is called uniformly elliptic if there exists λ > 0 such that

(67)
n∑

i,j=1

aij(x)ξiξj = ξtA ξ > λ|ξ|2 for all ξ ∈ Rn \ {0} and x ∈ U.

The ellipticity condition (67) means that the lowest eigenvalue of A is bounded below

uniformly on U . The symmetry assumption on A can always be achieved (how?).

Note that linearity means L[u + v] = L[u] + L[v].

Examples. 1. If A is the identity matrix and b = 0 then L is the Laplacian.

2. A special case is that A is constant and symmetric. Then (67) is equivalent to A being

positive definite.

3. An elliptic equation essentially behaves like a distorted Laplace equation. However, if

we give up positive definiteness then the equation behaves differently: For instance, for the

hyperbolic equation ∆u − utt = f the Dirichlet problem is not well-posed, the maximum

principle is not valid (superposition of waves!), and solutions can be less regular than their

boundary/initial values (shock waves!).

4. Later, we will encounter operators in divergence form, that is,

Lu(x) =
∑
i,j

∂i

(
ãij∂ju

)
= div

(
Ã(x)∇u(x)

)
,

where Ã is a symmetric matrix of functions in C1(U). Indeed, differentiating we find

Lu =
∑
i,j

ãij∂iju+
∑

j

(∑
i

∂iã
ij
)
∂ju.

Thus if ãij satisfies the ellipticity condition (67) and if we set bk :=
∑

i ∂iã
ik then L is elliptic.
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Lemma 28 (Weak maximum principle). Let U be bounded, u ∈ C2(U, R)∩C0(U, R), and

L be uniformly elliptic. If Lu ≥ 0 for all x ∈ U then

(68) sup
U

u = sup
∂U

u

Similarly, if Lu ≤ 0 then infU u = inf∂U u.

Proof. Step 1: We consider an auxiliary function v := u + εeγx1 where ε > 0. Here, γ > 0

is chosen large enough so that the last inequality in

(69) Lv
L linear

= Lu + εL(eγx1)
Lu≥0

≥ ε
(
a11γ2 + b1γ

)
eγx1

L ell.

≥ ε
(
λγ2 − |b1|γ

)
eγx1

|b| bdd.
> 0

holds.

Step 2: On the compact set U , the function v takes a maximum at some point y ∈ U .

Suppose y is an interior point of U . Then ∇v(y) = 0 so that Lv(y) = trace
(
A(y)d2v(y)

)
.

We claim that the product of the negative semidefinite matrix d2v(y) with the positive

definite matrix A(y) is negative semidefinite. This implies Lv(y) ≤ 0 contradicting (69),

and so y ∈ ∂U holds.

To prove our claim, consider arbitrary matrices M, N . Then trace(MN) =
∑

ij mijnji =

trace(NM) so that the trace of a matrix product is invariant of the order of the product.

In particular, for each T ∈ GL(n), and with obvious notation,

trace
(
A d2v

)
= trace

(
(T−1AT )(T−1d2v T )

)
= trace

(
Â d̂2v

)
.

Since A is symmetric we can choose T ∈ O(n) such that Â := T−1AT is diagonal. Note

that

ξt
(
T−1MT

)
ξ = (ξtT t)M(Tξ) = (Tξ)tM(Tξ).

So on the one hand the diagonal matrix Â is still positiv definite, meaning âii > 0 for

all i. On the other hand, d̂2v(y) = T−1d2v(y)T is negative semidefinite, so that its diagonal

entries are non-positive, d̂2v(y)ii ≤ 0. Consequently,

Lv(y) = trace
(
Â d̂2v

)
=

n∑
i=1

âii(y)∂̂iiv(y) ≤ 0,

which establishes our claim.

Step 3: We have supU u ≤ supU(u + εeγx1) = sup∂U(u + εeγx1). Since this holds for each

ε > 0 and eγx1 is bounded on U , the claim follows. �

As for harmonic equations, the uniqueness of solutions for elliptic equations with prescribed

boundary values is again immediate:
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Theorem 29. Let U be bounded and f ∈ C0(U, R). If u1, u2 ∈ C2(U, R) ∩ C0(U, R) are

two solutions of the elliptic boundary value problem Lui = f with the same boundary values

u1|∂U = u2|∂U then u1 = u2.

Proof. The function u1 − u2 has zero boundary values, satisfies L(u1 − u2) = 0, and so the

maximum principle gives u1 − u2 ≡ 0. �

5.3. Hopf Lemma and strong maximum principle for elliptic equations. For the

following lemma, the boundary of the domain needs to be suitably good: A domain U

satisfies an interior sphere condition at p ∈ ∂U , if there is a ball Br(q) ⊂ U with p ∈ ∂Br(q).

Then the interior normal ν to Br(q) at p is called an inner normal to U at p. If the boundary

is C1, the inner normal is unique. If a compact domain U has a C2-boundary then the local

normal form of a hypersurface together with a compactness argument prove that U satisfies

an interior sphere condition uniformly, i.e., with uniform r > 0.

13. Lecture, Thursday 27.5.10

Lemma 30 (E. Hopf Boundary Point Lemma). Suppose U satisfies an interior sphere

condition at p ∈ ∂U with an interior normal ν and let L as in (66) be uniformly elliptic

with coefficient matrix A bounded on U . Suppose that the function u ∈ C2(U, R)∩C0(U, R)

satisfies Lu ≥ 0 and takes a strict boundary maximum at p ∈ ∂U , that is, u(x) < u(p) for

all x ∈ U . Then, provided the normal derivative exists,

∂u

∂ν
(p) < 0.

Proof. Let B = Br(y) ⊂ U be a ball with p ∈ ∂B. Without loss of generality, y = 0 and

u(p) = 0. Then for each c > 0 the auxiliary function

ϕ(x) := e−c|x|2 − e−cr2

is positive on the annulus R = Br(0) \ Br/2(0), it vanishes at p, and, as we will use at

the end of the proof, has positive directional derivative at p w.r.t. the inner normal of ∂R.

Moreover, we have ∂iϕ(x) = −2cxie
−c|x|2 and hence

Lϕ(x) = e−c|x|2
(
4c2
∑
i,j

aijxixj − 2c
∑

i

(aii + bixi)
)
≥ 2ce−c|x|2

[
2cλ|x|2 −

∑
ia

ii − |b||x|
]
.

Since A, b, |x| are bounded on R, and |x|2 > r2/4, we can choose c large enough to conclude

[. . .] ≥ 0 on R and hence Lϕ ≥ 0.

Our function u is negative in the interior, so we can choose ε > 0 with u+εϕ ≤ 0 on ∂Br/2;

on ∂Br the same holds anyway. Since L(u + εϕ) ≥ 0 the weak maximum principle (68)
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applies to give u + εϕ ≤ 0 on R, while (u + εϕ)(p) = 0. Thus the normal derivative of this

function at p is ≤ 0 which implies

∂u

∂ν
(p) ≤ −ε

∂ϕ

∂ν
(p) < 0.

�

Example. In the situation of the Hopf Boundary Point Lemma the Taylor expansion of a

harmonic function (or a solution to Lu ≥ 0) at a maximum has a nonzero linear term.

However, at a corner point of a general boundary, the interior sphere condition is not

satisfied, and the linear term of the Taylor expansion can vanish: The harmonic function

u(x, y) = −xy on the quadrant (0,∞) × (−∞, 0) agrees with its Taylor expansion at the

origin, and so starts with a quadratic term.

We can now conclude:

Theorem 31 (Strong maximum principle). Let U be a domain and L be uniformly elliptic

with Lu ≥ 0 on U . If u achieves an interior maximum then u is constant.

Proof. Suppose, contrary to the statement, that u achieves a maximum m ≥ 0 at an

interior point but that u is non-constant. Then the open set U< := {x ∈ U, u(x) < m} is

non-empty. Pick a point p ∈ U< that is closer to ∂U< than to ∂U , and consider the largest

open ball B(p) ⊂ U<. Then u(x) = m for some point x ∈ ∂B(p) while u < m on B(p).

Also, B(p) ⊂⊂ U , and so the matrix A is bounded on B(p). By the Hopf Boundary Point

Lemma, ∇u(x) 6= 0, contradicting the fact that m is the maximum of u. �

References: [GT], Sect. 3.1 and 3.2

5.4. Maximum principle for graphs with prescribed mean curvature. Our starting

point is the mean curvature equation in its divergence form (13): Let

(70) Qu :=
n∑

i=1

∂i

(
∂iu√

1 + |∇u|2

)
− nH,

then a graph
(
x, u(x)

)
of mean curvature H = H(x) satisfies Qu = 0.

The equation Qu = 0 is nonlinear, that is, Qu = Qv = 0 does not imply Q(u + v) = 0.

Nevertheless there is a maximum principle, saying that two different graphs with the same

mean curvature cannot have a one-sided tangential touching:

Theorem 32. Let U be a domain and u, v ∈ C2(U, R)∩C0(U, R) describe two graphs which

have the same mean curvature function H ∈ C0(U, R) with respect to the upper normal.

Then we have:

(i) Interior maximum principle: If u ≤ v and u(p) = v(p) at some interior point p ∈ U ,

then u ≡ v.
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(ii) Boundary maximum principle: Suppose there exists a boundary point p ∈ ∂U such that

the following holds:

• ∂U satisfies an interior sphere condition at p and u, v ∈ C2(U ∪ {p}) ∩ C0(U, R) ,

• u(p) = v(p),

• ∂u
∂ν

(p) = ∂v
∂ν

(p), where ν is an inner normal at p,

• u(x) ≤ v(x) for all interior points x ∈ U .

Then u ≡ v.

Example. Once again, boundary regularity is necessary for (ii) to hold: The Enneper surface

is graph in a neighbourhood of the origin 0 and has the xy-plane as its tangent plane. In

particular, the Taylor expansion does not have a linear term at 0. On the other hand, on

a rotated quadrant U (violating the sphere condition at 0), the Enneper surface takes zero

boundary values but it does not agree with the xy-plane.

Proof. It will be convenient to define

αi ∈ C∞(Rn, R), αi(p) :=
pi√

1 + |p|2
, 1 ≤ i ≤ n,

so that Qu = div α(∇u)− nH.

As we have seen in the uniqueness proofs for Laplace’s or elliptic equations, it is useful to

consider the difference u− v. If the graphs u, v have the same mean curvature H(x), then

at each x ∈ U

0 = Qu−Qv =
∑

i

∂

∂xi

αi(∇u)− ∂

∂xi

αi(∇v) =
∑

i

∂

∂xi

αi
(
t∇u + (1− t)∇v

)∣∣∣t=1

t=0

=

∫ 1

0

d

ds

[∑
i

∂

∂xi

αi
(
s∇u + (1− s)∇v

) ]
s=t

dt

=
∑
i,j

∫ 1

0

∂

∂xi

(
∂αi

∂pj

(
t∇u + (1− t)∇v

)(
∂ju− ∂jv

))
dt

=
∑
i,j

∂

∂xi

([∫ 1

0

∂αi

∂pj

(
t∇u + (1− t)∇v

)
dt

](
∂ju− ∂jv

))
.

Thus in terms of

aij ∈ C1(U, R), aij(x) :=

∫ 1

0

∂αi

∂pj

(
t∇u(x) + (1− t)∇v(x)

)
dt

we can rewrite our result to say that w := u− v satisfies

Lw :=
∑
i,j

∂i

(
aij(x)∂jw

)
= 0.

Here L is a linear second order partial differential operator in divergence form which puts

us into the position to apply the maximum principle. We have achieved linearity of L at the
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expense of having its coefficients aij depend on our given functions u, v. No complications

arise since, within the present proof, these two functions are fixed once and for all.

We claim that L is elliptic on any compact subset K ⊂⊂ U . We differentiate to find

(71)
∑
i,j

∂i

(
aij(x)∂jw(x)

)
=
∑
i,j

aij(x)∂ijw(x) +
∑

k

(∑
i ∂ia

ik(x)
)
∂kw(x).

First of all, the chain rule gives that the linear coefficients
∑

i ∂ia
ik are bounded on K: this

follows from α smooth and u, v ∈ C2(K, R). Also, (71) means that the ellipticity condition

amounts to showing
∑

aijξiξj > λ|ξ|2. To see this, set P (t, x) := t∇u(x) + (1 − t)∇v(x).

Then

∂αi

∂pj

(P ) =
∂

∂pj

Pi√
1 + |P |2

=
δij√

1 + |P |2
− PiPj(

1 + |P |2
)3/2

, 1 ≤ i, j ≤ n.

The continuous function |P (t, x)| takes a maximum over the compact set [0, 1]×K. Hence

we can define a positive number λ = λ(K, u, v) such that the following holds:

∑
i,j

∂αi

∂pj

(P )ξiξj =
1(

1 + |P |2
)3/2

((
1 + |P |2

)
|ξ|2 − 〈P, ξ〉2

)
Schwarz

≥ 1(
1 + |P (t, x)|2

)3/2
|ξ|2 > λ|ξ|2 ∀ ξ ∈ Rn \ {0}

(72)

Integration of this equation with respect to t verifies the ellipticity condition for L,

∑
i,j

aij(x)ξiξj =
∑
i,j

[ ∫ 1

0

∂αi

∂pj

(
P (t, x)

)
dt
]
ξiξj >

∫ 1

0

λ|ξ|2 dt = λ|ξ|2 ∀x ∈ K.

Let us prove (i). The strong maximum principle, Thm. 31, implies w = u− v ≡ 0 for any

compact set K ⊂⊂ U which contains the point p ∈ U where u and v coincide. Consequently,

u ≡ v on all of U .

14. Lecture, Tuesday 1.6.10

We now prove (ii). The interior sphere condition provides us with a ball B such that ∂B

contains only the boundary point p ∈ ∂U . Except for a neighbourhood of p, the set B is a

set compactly contained in U . Thus as before and using the assumed differrentiability of

u, v at p, the functions ∂ia
ik and |P |2 are bounded on B, and so Lw = L(u− v) is elliptic

on B. We have w = u− v ≤ 0 on B. In fact, invoking the interior maximum principle we

may assume w = u − v < 0 on B. Then the Hopf Boundary Point Lemma 30, applied to

w = u− v, contradicts our assumption ∂w
∂ν

(p) = 0. �
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5.5. Uniqueness of surfaces with prescribed mean curvature. We discuss applica-

tions of the maximum principle. To consider surfaces globally, beyond the parameterized

local pieces f : U → Rn, we define as follows.

A hypersurface M is an n-dimensional submanifold of Rn+1. A hypersurface with boundary

is locally either parameterized as f : Bn → Rn+1 (for interior points), or f : Bn ∩ {xn ≥
0} → Rn+1 (for boundary points). The boundary can be empty.

If you know abstract manifolds, then whenever we say hypersurface M you can take instead

the image of an n-manifold Σ immersed into Rn+1, i.e., M denotes an immersion ϕ : Σn →
Rn+1. Similarly, a manifold with boundary has charts either to Bn or to Bn ∩ {xn ≥ 0}.

The second definition is more general than the first in that it allows for self-intersections.

Indeed, when the immersion of the second definition happens to be an embedding then we

are in the situation of the first definition, and could actually take the inclusion map of a

submanifold Σ for ϕ.

With this notion of a surface we first assert the convex hull property of minimal surfaces:

Theorem 33. Let M ⊂ Rn+1 be a minimal hypersurface M with boundary which is boun-

ded. Then

(i) M is contained in the convex hull of its boundary values, M ⊂ conv(∂M), and

(ii) if M touches the boundary ∂ conv(∂M) of its convex hull at a point interior to M ,

then M is contained in a plane.

Here, be definition the convex hull of a set A ⊂ Rn is the intersection of all half-spaces

containing A.

Proof. (ii) Suppose there is a hyperplane P which is tangent to M at an interior point,

such that only one component of R3 \P contains points of M . We can represent M locally

as a graph over P . Then by the maximum principle, Thm. 32(i), locally M must agree

with P . But the set of points for which M agrees with P is closed (consider sequences)

and open (by the interior maximum principle). Since M is connected, all of M must be a

subset of P .

(i) By applying a suitable motion we can assume that conv(∂M) is contained in the lower

halfspace {z ≤ 0}. Suppose M intersects the upper halfspace {z > 0}. Then consider

planes P (h) = {xn+1 = h} at height h such that P (h) ∩M 6= ∅. The set of such heights

h is bounded above (since M is bounded), and so there is a supremum h0 < ∞ of these

values. Moreover, P (h0) still intersects M , by the compactness of M . We have arrived at

a contradiction to the interior maximum principle, Thm. 32(i). �
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Clearly, the convex hull property fails for unbounded minimal surfaces: think of a catenoid

half, bounded by a circle. Also for H 6= 0 it cannot hold: A circle bounds a spherical cap.

If the boundary of a surface is empty then the convex hull property says that the surface

must be the empty set, that is:

Corollary 34. A complete minimal surface (with no boundary) cannot be compact.

We have not yet addressed the existence question for graphs with prescribed boundary

values (the so-called Dirichlet problem). We can, however, address uniqueness for this

problem:

Theorem 35. Let U be a bounded domain and u ∈ C2(U, R) ∩ C0(U, R). Suppose f(x) =(
x, u(x)

)
is a graph of mean curvature H ∈ C0(U, R).

(i) Then any other graph
(
x, v(x)

)
, v : U → R with the same mean curvature function

H(x) and the same boundary values coincides with u.

(ii) If U is convex and f minimal, then f parameterizes the unique bounded minimal

surface attaining its boundary values (no matter if graph or not).

Property (ii) fails for nonzero mean curvature. An example with arbitrary constant mean

curvature H 6≡ 0 is a spherical cap, not equal to a hemisphere, considered as a graph over

a disk. Then the complementary spherical cap, reflected in the plane of the disk (to have

the same sign of H), is another solution with the same mean curvature.

Thus the strategy of the following indirect proofs is to create an interior one-sided touching

of two minimal surfaces, contradicting the interior maximum principle.

Proof. (i) Suppose u, v are two solutions with the same boundary values. Let m ≥ 0 be

the maximum of u− v. Since u = v on ∂U , the maximum is attained at an interior point

p ∈ U , and u ≤ v +m on U . The interior maximum principle Thm. 32(i), applied to u and

v + m, proves u ≡ v + m. The boundary values then prove m = 0.

(ii) Let N be a bounded minimal surface whose boundary values agree with the graph(
x, u(x)

)
. The set U × R is convex, and so Thm. 33(i) gives that N is also contained in

U ×R. In fact, N ⊂ U ×R since else N would be planar by Thm. 33(ii), contradicting the

fact that U has non-empty interior.

Now consider the foliation with translated graphs, f(t, x) =
(
x, u(x)+t

)
for t ∈ R. Since N

is bounded, there exist tmax := sup{t ∈ R, f(t, U) ∩N 6= ∅} and tmin := inf{. . .}. Suppose

now that N is different from the graph f so that one of tmax, tmin is nonzero, say tmax.

The two surfaces N and f(tmax, U) are compact, hence they intersect at a point p = f(x);

as tmax > 0 the point p cannot be a boundary point of N . Thus the intersection point p of

N and f(tmax, U) is interior to both surfaces.
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In order to apply the (interior) maximum principle, we claim that N can be represented as

a graph in a neighbourhood of p. To see this, note that if the normal ±ν(p) of N at p was

different from the normal to the graph f at x, then there would be points of N to both

sides of the graph, contradicting the maximality of tmax. �

In case (ii), existence for arbitrary boundary values will follow from the solution of the

Plateau problem in the next part, together with the present statement. However, in the

general case (i), existence does not hold for arbitrary boundary values.

Example. We want to show that convexity of the domain is necessary for uniqueness in

part (ii) to hold. Our counterexample is a piece of a catenoid M , considered as graph

over a suitable annulus in R2. For the outer radius R > 0 of the annulus take any radius

larger than the waist of M . Consider the family of scalings Mλ := λM for 0 < λ < 1. The

scaled catenoids Mλ also contain a circle of radius R. Assume that the Mλ are translated

along the axis such that these circles are contained in the xy-plane and such that the waist

circle occur with positive z-coordinate. Then any Mλ intersects M in a second circle of

radius ρ(λ) < R. In particular, there are two minimal surfaces bounded by the two circles

of radius ρ(λ) and R; here the z coordinate is 0 for the outer one, and a suitable positive

number for the inner one. The subset of M bounded by the two circles, is a graph, while

the subset of Mλ bounded by the same circles contains the catenoid waist and hence is not

graph. Consequently, over the annulus U := BR \Bρ(λ) there is a minimal graph, such that

a distinct minimal surface has the same boundary.

15. Lecture, Tuesday 8.6.10

5.6. Short account on existence results. For minimal surfaces, there are three different

methods to prove existence.

1. Dirichlet problem for constant mean curvature graphs over a domain:

Theorem. Let U ⊂ Rn be a bounded C2-domain, H ∈ R. Then the Dirichlet problemdiv ∇u√
1+|∇u|2

= nH on U

u = ϕ on ∂U

is solvable for all boundary values ϕ ∈ C0(∂U), if and only if the mean curvature H ′ of ∂U

(or curvature H ′ if n = 2) satisfies

(73) (n− 1)H ′(y) ≥ n|H| for all y ∈ ∂U.

Let us mention two special cases:

1. If U is convex it satisfies H ′ ≥ 0 and so there is a minimal graph (x, u).
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However, for domains violating (73) for some boundary values the Dirichlet problem is

solvable, e.g., ϕ = const, while some other boundary values exist, such that there is no

solution (see problems).

2. We can find a graph in R3 with mean curvature H = 1 for arbitrary boundary values

over the circle of curvature ≥ 2, that is, for radius R ≤ 1/2.

On the other hand, for R > 1, the maximum principle shows that there is no graph with

H = 1 for any boundary values (compare with a sphere!). For 1/2 ≤ R ≤ 1 graphs with

H = 1 can still exist for certain ϕ.

See [GT, ch. 16.3].

2. The Weierstrass-Enneper representation formula gives a minimal surface in terms of two

complex functions.

Theorem. If h : U ⊂ C → C is holomorphic and g : U → C meromorphic then f : U → R3

f(z) = Re

∫ z

z0

h

(
1

2

(1

g
− g
)
,
i

2

(1

g
+ g
)
, 1

)
dw

is an immersed minimal surface, provided certain conditions on the pole and zero order of

g and h are met. Conversely, any minimal surface can be locally represented this way.

The mapping g = st ◦ ν is stereographic projection of the Gauss map ν from S2 into the

complex plane. There is also a global version of the theorem where U is a Riemann surface.

Examples (see problems): a) Catenoid: U = C∗ = C \ {0}, g(z) = z, h(z) = 1
z

b) Enneper U = C, g(z) = z, h(z) = 2z

There is a generalization to constant mean curvature which is much more involved, by

Dorfmeister, Pedit, and Wu from 1998.

3. Plateau’s problem: The Belgian physicist Joseph Plateau studied soap films. In his trea-

tise Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires

from 1873 he postulated that every wire frame bounds at least one soap film; this is nowa-

days called the Plateau problem. Mathematically formulated:

Theorem. A Jordan (injective) curve Γ: S1 → Rn bounds an immersed minimal 2-disk

f ∈ C2(D, Rn) ∩ C0(D, Rn), i.e., f |∂D is a parameterization of Γ.

The minimal disk is not unique, and there may be other minimal surfaces, perhaps of smal-

ler area, having a different topology. There is a generalization to other ambient manifolds

N by Morrey, if N is noncompact a further condition must be assumed. A good source is

the book by Jost.
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Mathematicians tried unsuccessfully to prove this statement by establishing Weierstrass

data since the late 19th century. Only in the 1930’s, and Douglas and Rado found inde-

pendently a solution with different methods. In 1936, Douglas was awarded the first Fields

medal for his solution.

Let us give an idea of the lengthy and complicated proof. The proof finds the solution by

variational methods, that is, by taking a sequence with area decaying to the infimum and

then establishing that it converges to a nice minimal surface. However, minimizing area

directly leads to degeneracies – thin “hairs” do not contribute much to area, but could

add one-dimensional structures to the limiting object. The remedy is to consider a pro-

blem which penalizes poor parameterizations at the same time: This is done by minimizing

the Dirichlet energy
∫
|dfn|2 where fn ∈ C2(D, Rn) ∩ C0(∂D, Rn) has boundary values

parameterizing Γ, similar to the proof of the Riemann mapping theorem. A suitable limit

f = lim fn in the same class will turn out to be the solution to the Plateau problem; con-

vergence is established by the Arzela-Ascoli theorem. Then f is also harmonic. Moreover,

since it minimizes energy among all maps whose boundary values parameterize Γ, it can

be shown to be conformal. But a harmonic map f which also is conformal is at the same

time critical for area, i.e., a minimal surface. Unfortunately, this only establishes f as a

differentiable map, but not as an immersion. By work started by Osserman in the 1960’s,

branch points with dfp = 0 can be ruled out.

For constant mean curvature, additional constraints must be imposed: Clearly, spherical

caps can only bound boundary circles with radius R < 1/H. The maximum principle

shows that such circles cannot be the boundary of any embedded surface with H ≥ 1, see

problems. However, given a condition of this kind, Hildebrandt proved the solvability of

Plateau’s problem for constant mean curvature in 1970:

Theorem. Let H > 0 and Γ be a piecewise smooth Jordan curve in R3, contained in the

closed ball B1/H of radius 1/H. Then there exists a map f ∈ C2(D, B1/H) ∩ C0(D, B1/H)

such that

• f restricted to S1 parameterize Γ injectively,

• f is conformal in D with ∆f = 2H∂1f × ∂2f .

Note that f is not established as an immersion; this follows from further theorems. However,

at points f is an immersion the mean curvature is H.

Furthermore, there are geometric methods which produce constant mean curvature H > 0

surfaces in R3 from minimal surfaces in the sphere S3
1/H of radius 1/H, discovered by

Lawson 1970. This way, solutions of the Plateau problem in S3 can be used to construct

mean curvature H surfaces.
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5.7. Alexandrov theorem. We now apply the maximum principle to prove the symmetry

of compact solutions of H ≡ 1, and hence the uniqueness of S2. The proof uses reflection

of the portion of the solution to one side of a plane. This is often called the Alexandrov

reflection; since only the maximum principle is essential it applies to more general PDE’s

as well (Gidas, Ni, Nirenberg).

Theorem 36 (Alexandrov, 1956). Spheres are the only compact embedded hypersurfaces

in Rn+1 with constant mean curvature.

In case of constant nonzero H the radius of the sphere is 1/H. We have formulated the

theorem in a way that it also applies to the case H ≡ 0, in which case there are no compact

solutions. In that case, however, a much simpler proof can be given, based on the fact that

there is a sphere enclosing the surface and touching it from one side; this proof also works

for immersed compact minimal surfaces.

The following fact will be used in the proof: A complete embedded hypersurface M de-

composes Rn+1 into two connected components. Here, a (connected) component of set A

(of a Euclidean or, more generally, a topological space) is a nonempty subset C ⊂ A which

is relatively open and closed, and does not contain a proper nonempty subset with the

same property. It is equivalent to require that C has the property that any differentiable

function to the real numbers with vanishing gradient takes constant values on C.

In dimension n = 2, our statement is the Jordan curve theorem, and holds for any injective

continuous curve.

Our statement is not as straightforward as it might appear on the first sight: It is, for

instance, not true that an injective continuous map of Sn into Rn+1 has a connected com-

ponent in its complement which is homeomorphic to the ball Bn: The Alexander horned

sphere provides a counterexample for the case of S2 → R3. As long as we assume that

the manifold is embedded, that is, a homeomorphism onto its image, such pathological

examples cannot occur.

16. Lecture, Thursday 10.6.10

Let us now indicate how our statement can be proven in the case that M ⊂ Rn+1 is a

compact smooth submanifold of dimension n. For our special argument to work, we also

assume M to be oriented by a normal mapping ν. Since M is immersed and ν normal, the

mapping

ϕ : M × R → Rn+1, ϕ(p, t) = p + tν(p)

has rank n+1 on M ×{0}. By continuity and since M is compact, there is ε > 0 such that

ϕ has full rank on the thickened neighbourhood Mε := M×(−ε, ε). If M is embedded there

is a homeomorphism of a neighbourhood of M × {0} ⊂ M × R into Rn+1, meaning that
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for ε small enough also ϕ : Mε → Rn+1 is an embedding. We claim there are at most two

components of Rn+1 \M . Let us denote with M±
ε dthe two sets M× (0, ε) and M× (−ε, 0).

Then clearly the set ϕ(Mε) \M has exactly two components ϕ(M±
ε ). On the other hand,

the boundary of any further connected component of Rn+1 \M must be contained in M ,

ruling out that any such component exists. This proves our claim.

Now we prove there are at least two components, defining a generalized winding number.

To see the two sets ϕ(M±
ε ) are actually in different components of Rn+1\M , we construct a

locally constant continuous function on Rn+1 \M which takes at least two different values.

To define it we need a concept of differential topology. If f ∈ C1(Mn, Nn) is a differentiable

mapping from a compact manifold to a target manifold of the same dimension, then at

each point y ∈ N we define a degree by counting the number of its preimages with a sign

given by their orientation,

degy(f) :=
∑

x∈f−1(y)

sign(det dfx) ∈ Z.

For almost all y ∈ N the number of preimages is finite and the differential of all preimages

x of y is nonzero, by Sard’s Theorem. Hence degy is defined for y in a dense subset of N .

The sum can be empty; in particular, if f is not surjective in the sense that a set of positive

measure is not attained then the degree is 0. The simplest examples worth considering are

maps from S1 to S1.

It is a fact that the degree is independent of the point y considered, deg(f) := degy(f).

Consequently, for N compact (or with finite measure), we can also represent the degree by

averaging, deg(f) = 1
λ(N)

∫
M

det dfx dλM(x), that is, we compute the oriented area of the

image of M .

Let us now specifically consider a function which also depends on p ∈ Rn+1 \M :

πp : M → Sn, πp(x) :=
x− p

|x− p|
.

Geometrically, this is radial projection of x ∈ M onto a sphere with midpoint p. Using

that degy(πp) does not depend on y ∈ Sn, we now consider dependence of deg(πp) on the

parameter p. We claim that p 7→ deg(πp) is a continuous function into the integers Z. To see

that, consider the representation of deg(πp) as the oriented area of the image πp, divided

by A(Sn). Obviously, this depends continuously on the midpoint p of the projection sphere.

For p large, we have deg(πp) = 0. Indeed, for such p there is an open set in the target Sn

which is not covered by πp, and so the degree must vanish. On the other hand, the degree

changes by ±1 when M is crossed, which gives the claim. See [Spivak I, ch.8, problem 22].

The preceding sketch of proof in particular gives the Jordan curve theorem in the plane

for differentiable simple curves.
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Let us now give the proof of the Alexandrov theorem:

Proof. Let M be a compact embedded hypersurface with H ≡ 1, and denote the component

of Rn+1 \M with compact closure by V .

Consider the planes Πs := {xn+1 = s} bounding the halfspaces Hs
+ := {xn+1 > s} and

Hs
− := {xn+1 < s}. We write M s

± or V s
± for the intersection of M or V with the open

halfspaces Hs
±, respectively.

Let σs be reflection in Πs. Let us decrease s from ∞ to a minimal value a such that the

reflection of the upper portion M s
+ is strictly inside the surface M in the following sense:

(74) a := inf{s0 ∈ R : for all s ≥ s0 holds σs(M
s
+ ∪ V s

+) ⊂ V s
−}

The xn+1-coordinate of M is bounded above, and so large positive numbers s are certainly

contained in the above set. On the other hand, since xn+1 is also bounded below on M all

negative numbers s below this bound cannot be contained in the set, meaning the set is

bounded below. We conclude that a ∈ R exists.

We claim that at s = a one of the following cases must occur:

(i) Interior contact: There exists p ∈ M s
− ∩ σs(M

s
+).

(ii) Boundary contact: At a point p ∈ Πs∩M , the tangent plane of TpM is vertical so that

M and σs(M) have the same tangent plane at p.

To prove the claim we show that if none of these conditions holds for some s then s > a.

Let ν be the inner normal of M . Then for s > a the inner normal points downwards on

the upper half, νn+1 ≤ 0 on M s
+. Indeed, if νn+1 > 0 at some point p ∈ M ∩ Πs, then

σs(M) and M are transverse at p, i.e., their tangent spaces at p are distinct such that a

neighbourhood of σs(M
s
+) at p cannot be contained in V s

−.

If (i) does not hold then the two sets M s
− and σs(M

s
+) have a positive distance within the

lower halfspace Hs−ε
− for any ε > 0. If in addition (ii) does not hold then νn+1 < 0 on

M ∩ Πs, and so for some δ > 0 actually νn+1 < −δ < 0 on the compact set M ∩ Πs. Since

M is C2 this in turn implies νn+1 < −δ/2 on the thickened set M ∩{s− ε ≤ xn+1 ≤ s+ ε}.
These two facts mean that there is a neighbourhood of s such that (i) and (ii) will not

occur. Hence s must be larger than the infimum a of (74).

We now apply the interior or boundary maximum principles to show that Πa is a symmetry

plane for M .

In case (i), the tangent planes TpM
a
− and Tpσ(Ma

+) at the point p must coincide (otherwise

σ(V a
+) was not contained in V a

−). But then each of the two surfaces, Ma
− and σa(M

a
+)

can locally be represented as a graph h± over the common tangent plane. The condition

σ
(
V a

+

)
⊂ V a

− implies h− ≤ h+ w.r.t. the upper normal, and so h− and h+ coincide at p.
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The interior maximum principle, Thm. 32(i), then proves that the two local graphs h±
coincide. In fact, σa(M

a
+) = Ma

− since the set σa(M
a
+)∩Ma

− is relatively closed in Ma
−, and

also relatively open by the interior maximum principle.

In case (ii) we can again write Ma
− and σa(M

a
+) as graphs h± over their common vertical

tangent plane at p. Since both surfaces have boundary in Πa, the domain of the local graph

is bounded by a straight arc containing p, and so the interior sphere condition holds at p.

Also the graphs are C2 up to the boundary: they extend to the complete C2-surface M .

Finally, the tangency of (ii) means that the normal derivatives of the two functions h±

coincide at p. Again this shows that locally σ(Ma
+) and Ma

− agree. An openness/closedness-

argument as before then proves globally σa(M
a
+) = Ma

−.

We have shown that Πa is a symmetry plane for M . The same argument works with respect

to any direction, meaning that M has a symmetry plane with any prescribed normal. By

the next lemma, M must be a sphere. �

Reflections through non-parallel planes generate rotations:

Lemma 37. If a bounded set S ⊂ Rn has a plane of mirror symmetry in every directi-

on then there is a point p such that S is invariant under arbitrary rotations about p; in

particular, S is a union of spheres.

Proof. Take n mutually orthogonal symmetry planes P1, . . . , Pn for S. They intersect in

just one point {x} := P1 ∩ . . . ∩ Pn. Note that reflections in the Pi preserve distance to x.

Now let P be another plane of symmetry. Suppose P does not contain x, so that the

distance d of P to x is positive. Then P must miss one of the 2n generalized quadrants Q

of Rn.

Let a be a point of S (if S is empty there is nothing to prove). By reflections in the planes

Pi we obtain a0 ∈ Q ∩ S. Reflecting a0 in P gives a point a1 ∈ S with ‖a1 − x‖ ≥ 2d.

We can reflect in the Pi’s to obtain a point a2 ∈ Q ∩ S, preserving the distance to x.

Iterating reflections in P and the Pi’s, we obtain a sequence of points an ∈ S with norm

‖an − x‖ ≥ (n + 1)d →∞, contradicting the boundedness assumption. �

For a number λ > 0, the isoperimetric problem in Rn is the problem to determine a

domain S with prescribed measure λ(S), such that the smooth hypersurface ∂S has least

area (or (n− 1)-dimensional measure).

Corollary 38. The solution of the isoperimetric problem in Rn are balls bounded by sphe-

res.
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It is interesting –in fact geometrically more interesting– to consider the isoperimetric pro-

blem in other ambient spaces. In particular, for compact spaces there are nontrivial soluti-

ons: Even for the standard 3-torus, T 3 := R3/Z3, the solution family λ 7→ Mλ is not known.

Only in the class of sufficiently symmetric solutions, Ros could determine the solutions for

any 0 ≤ V (S) ≤ 1. See the problems for the simpler case T 2.

17. Lecture, Tuesday 15.6.10

The existence of a solution to the isoperimetric problem is not a priori clear, and involves

nontrivial analytical work. Taking it for granted, the rest of the proof is trivial:

Classification proof. Consider a solution S such that M := ∂S is smooth, i.e., M is an

embedded hypersurface. Then M minimizes area for given volume V (S). Hence by the

n-dimensional version of Thm. 13, a solution has constant mean curvature H. Hence Alex-

androv’s theorem applies to show that M is a sphere; in particular H must be nonzero. �

There are various other settings where Alexandrov reflection applies. We discuss some of

them.

1. What are the compact embedded constant mean curvature surfaces M ⊂ Rn+1 bounded

by a (planar) circle in Rn × {0}? An yet unsolved conjecture says that these must be

spherical caps. There are counterexamples in case M is not compact (Delaunay) or compact

but immersed (by Kapouleas). Alexandrov reflection gives that the statement is true if the

constant mean curvature surface is contained in one of the two halfspaces defined by the

hyperplane containing the circle [source?].

2. The technique generalizes to other ambient spaces:

• Compact constant mean curvature hypersurfaces in Hn+1 are distance spheres.

• Compact hypersurfaces with constant H contained in open hemispheres of Sn+1 are

distance spheres, in particular hemispheres cannot contain minimal surfaces.

To prove these assertions, the reflection is applied w.r.t. to a foliation of the spaces with

totally geodesic hypersurfaces, namely hyperbolic hyperplanes or great spheres. Reflection

in these hypersurfaces preserves mean curvature. However, the method does not work to

prove anything about hypersurfaces in the entire sphere Sn. In fact there are compact

embedded minimal surfaces in Sn with any genus g ≥ 0. The Lawson conjecture says that

any embedded minimal torus in S3 is the Clifford torus {(z, w) ∈ S3 : |z|2 = |w|2 =

1/2}. Alexandrov reflection had long been considered a candidate for a proof, but a proof

suggested by Kilian and Schmidt in 2008 employs integrable systems methods.

3. The reflection technique has been applied to non-compact surfaces, under the assumption

of controlled asymptotics of the non-compactness:

• Minimal embedded annuli with two embedded ends of finite total curvature in R3 (R.
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Schoen: Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Diff. Geom. 18,

791–809, 1983).

• Properly embedded constant mean curvature annuli in R3 are Delaunay unduloids; see

Sect. 7 below for this and further results.

Corollary 39. Suppose Π decomposes a constant mean curvature surface M into two

halves M± as in the proof of the Alexandrov reflection. Then

(i) the Gauss map of each half M± (inner normal) takes values in a hemisphere of the

2-sphere, ν(M±) ⊂ S2
∓, with ν(∂M±) being contained in the equator, and

(ii) each half M± is graph over the domain Π ∩M .

4. A capillary surface M in a set N ⊂ R3 is a surface of constant mean curvature which

meets ∂N with constant contact angle, that is, the normal of N and the normal of M make

a constant angle. J. McCuan generalized the Alexandrov technique to work with spheres

instead of planes and proved: If N is a wedge, then any compact capillary surface is a

spherical drop, so no drops of annular type exist in a wedge.

5. There are spaces like the Heisenberg group which do not admit any reflection. However, there

are still rotations about vertical geodesics, and so compact embedded surfaces of constant mean

curvature can be obtained as ODE solutions. An interesting problem is to confirm that these

surfaces are the unique compact embedded constant mean curvature surfaces, even though the

technique of Alexandrov reflection does not work.

There is also an interesting generalization of the embeddedness to which the Alexandrov

reflection technique can still be applied.

Definition. A compact hypersurface ϕ : Mn → Rn+1 is Alexandrov embedded if the n-

manifold M is the boundary of an (n + 1)-manifold N and there is an immersion Φ: N →
Rn+1 extending ϕ in the sense Φ|M = ϕ.

Example. A figure-8-curve is not Alexandrov embedded, but an overlapping circle is.

A careful inspection of the proof we gave establishes the following corollary.

Corollary 40 (Alexandrov 1960’s). The conclusion of the theorem extends to Alexandrov

embedded compact hypersurfaces with constant mean curvature.

Note that in this version of the Alexandrov theorem the proof does no longer rely on the

topological fact that a compact surface bounds a compact component!
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5.8. Problems.

Problem 13 – Test:

a) Why is it no loss of generality to assume that the matrix A in Lu = traceAd2u =
∑
aij∂iju

is symmetric?

b) Prove that if u is subharmonic (∆u ≥ 0) on a bounded domain U , and h is a harmonic
function (∆h = 0) with the same boundary values, u|∂U = h|∂U , then u(x) ≤ h(x) for all
x ∈ U . Discuss also the equality case u(p) = h(p) for an interior point p ∈ U .

c) A standard linear algebra result is that a linear map L : V →W with kerL = 0 gives Lx = b

has at most one solution x. Draw the analogy to the uniqueness theorem for the Poisson
equation Lu = f . (What are the vector spaces V,W?)

Problem 14 – Maximum of harmonic functions on unbounded domains:

Exhibit an unbounded domain U ⊂ Rn with non-empty boundary and a harmonic function
u : U → R such that u does not take a maximum on the boundary.

Problem 15 – Versions of the maximum principle:

Let U ⊂ Rn be bounded.

a) Prove for a harmonic function u ∈ C2(U,R) ∩ C0(U,R):

sup
U
|u(x)| = sup

∂U
|u(x)|

b) A mapping u ∈ C2(U,Rn) ∩ C0(U,Rn) is called harmonic if each component is a harmonic
function. Prove that harmonic mappings satisfy the above maximum principle.

Problem 16 – Uniqueness and symmetry of solutions:

Suppose σ is reflection in the hyperplane {xn = 0} ⊂ Rn,

σ : Rn → Rn, σ(x1, . . . , xn) := (x1, . . . , xn−1,−xn).

We call a domain U ⊂ Rn mirror symmetric if σ(U) = U . For a bounded mirror symmetric
domain U , consider a function u ∈ C2(U,R) ∩ C0(U,R) whose boundary values are invariant
under σ, that is, u(x) = u

(
σ(x)

)
for all x ∈ ∂U .

Consider the following cases:

1. u is harmonic, or
2. u solves a uniformly elliptic equation Lu = 0.

a) Decide for each of the two cases if u respects the symmetry σ, i.e.,

u(x1, . . . , xn) = u(x1, . . . , xn−1,−xn) for all x ∈ U.
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b) On the other hand, find a solution v of the equation ∆v+v = 0 which has symmetric boundary
values, but is not invariant under σ (it suffices to consider n = 1).

c) Consider the cases for which the answer under a) is in the affirmative. Prove the same state-
ment more generally for isometries A ∈ O(n), for instance for rotations.

Problem 17 – Maximum principle with exceptional points:

Let us first state two facts:
1. log |x| : R2 \ {0} → R is harmonic.
2. If f : Ω2 → R2 is conformal then ∆(u ◦ f) = (∆u) ◦ f .
Use these facts to prove the following:

a) Let D ⊂ R2 be the unit disk, and set D∗ := D \ {(1, 0)}, S∗ := S1 \ {(1, 0)}. Find a harmonic
function u ∈ C2(D,R)∩C0(D∗,R) with boundary values u|S∗ = 0 such that u is not constant.
Hint: Exhibit a nonzero harmonic function with zero boundary values on the upper halfplane.

b) Prove that each bounded harmonic function u ∈ C2(D,R) ∩ C0(D∗,R) is constant.
Hint: Compare with ε log |z − 1|.

c) Generalize: Can you admit more than just one exceptional point? Can you replace the boun-
dedness assumption on u by a growth condition at the exceptional points? What is the n-
dimensional generalization?

d) Prove the two facts stated above by calculation.

Problem 18 – Dirichlet problem over a non-convex domain:

The following example indicates that the solvability of the Dirichlet problem for arbitrary boun-
dary data requires convexity of the domain.

a) Let C be a catenoid whose axis of revolution is the z axis. Find a closed simple (Jordan) curve
Γ ⊂ C with the following properties:
1. The projection π(Γ) into the xy-plane is injective.
2. π(Γ) is the boundary of a domain U in the xy-plane which is not convex.
3. Γ bounds an open bounded subset M ⊂ C such that M is not graph over U .

b) Prove that M is the unique minimal surface bounded by Γ; perhaps you need to modify Γ
suitably. Hence Γ cannot bound a minimal surface which is a graph over U .
Hint: Which theorem of the lecture can only prove this claim?

c) Can you prescribe other non-constant boundary values over ∂U , such that there is a unique
minimal graph over U?

Problem 19 – Constant mean curvature surfaces bounded by circles:

a) Suppose M ⊂ R3 be an embedded surface
• with mean curvature 1,
• the boundary ∂M is a circle of radius R > 1,
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• M is contained in a halfspace (determined by the plane of the circle).
However, we do not assume that M is bounded. Prove that M cannot exist.
Hint: You can assume that such an M would decompose the closed upper halfspace {z ≥ 0}
into two connected components U and V .

b) Suppose M ⊂ R3 is a surface
• with mean curvature 1,
• M is a bounded,
• the boundary of M is a circle of radius R ≤ 1,
• M is contained in a halfspace (determined by the plane of the circle).
Prove that (as stated in class) Alexandrov reflection works to show that M is a spherical cap
of a unit sphere.

c) Generalize the statements to arbitrary dimension – are they true?

Problem 20 – Quiz:

True or false?

a) A constant mean curvature surface with boundary and compact closure is always contained
in the convex hull of its boundary values.

b) If two surfaces of constant mean curvature are one-sided tangent at an interior point then
they agree locally.

Problem 21 – Mean curvature of entire graphs:

Determine the assumption on ε you need for the following assertions to become true, and give a
counterexample if the bound for ε is attained.

a) There is no graph over the entire plane R2 with constant mean curvature H > ε.

b) There is no graph over the entire plane R2 with variable constant mean curvature H(x) > ε.

Problem 22 – Alexandrov reflection:

Suppose M is a compact hypersurface, not necessarily with constant H. If a is defined as in (74),
can there exist s > a such that there is a point p in M ∩Πs with vertical tangent plane TpM? Is
your answer left unchanged if we assume that H is constant in addition?

Problem 23 – Alexandrov embedding in dimension 2:

Consider a map Φ ∈ C0(D,R2), which is an immersion on D; let ϕ := Φ|S1 be the boundary
restriction.

a) Suppose ϕ : S1 → R2 is injective. Show that there is a unique immersion Φ extending ϕ to D,
up to diffeomorphism.
Hint: Consider the number of preimages of Φ on R2 \ ϕ(S1).
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b) We show that the extension Φ of ϕ if ϕ is not injective. That is, there exist immersions Φ,Ψ
of the disk with continuous boundary values Ψ|S1 = Φ|S1 = ϕ, but there is no diffeomorphism
σ : D → D, such that Ψ ◦ σ = Φ.
To see that, find a mirror symmetric polygon in R2 with self-intersections, for which the
extension Φ is not be mirror symmetric. It is sufficient to consider a hexagon (or pentagon).

Problem 24 – The nodoid is not Alexandrov embedded:

Prove that the nodoid is not Alexandrov embedded, that is, there is no immersion

F : B3 \ {(0, 0,±1)} → R3,

whose restriction to the boundary S2 \ {(0, 0,±1)} parameterizes a nodoid.
Hint: Apply the Gauss-Bonnet formula to a suitable planar slice.

Problem 25 – Isoperimetric sets in 2-tori:

In class we showed that isoperimetric sets are bounded by constant mean curvature surfaces,
or bounded by constant curvature curves in the case of 2-dimensional domains. For the present
problem we can also assume that the solution domains are connected.

a) Determine explicitely isoperimetric sets in a square 2-torus, say: with unit area. To do so,
plot the function L(A), giving the length of the boundary of a set with area A for various
candidates. Note that in the torus there is no difference between inside and outside.

b) Discuss the same problem for a general 2-torus.

c) Do you have conjectures about the analogous problem for 3-tori? Plot A(V ) for some obvious
candidates.

Problem 26 – Weierstrass data:

The Enneper-Weierstrass representation formula is

f(z) = Re
∫ z

z0

h(w)
(

1
2

( 1
g(w)

− g(w)
)
,
i

2

( 1
g(w)

+ g(w)
)
, 1
)
dw.

a) Prove that on U = C the Weierstrass data g(z) = z, h(z) = 2z give the Enneper surface f .

b) Prove that on U = C∗ = C \ {0} and g(z) = z, h(z) = 1
z the function f parameterizes a

catenoid.
Hint: After integration, use conformal polar coordinates z = exp(r + iϕ), that is, calculate
f
(
exp(r + iϕ)

)
.
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18. Lecture, Thursday 17.6.10

6. Hopf’s uniqueness theorem

The theorem by Heinz Hopf says that any immersion of S2 with mean curvature 1 is a

round unit sphere. Thus we have the same conclusion as in Alexandrov’s theorem, but now

the embeddedness assumption is replaced by the asumption of an immersed 2-dimensional

sphere. The proof relies on complex analysis and topology; it is genuinely 2-dimensional.

To present the proof, we need to discuss a couple of concepts: immersions of a sphere or

general surface, and indices of vector fields on surfaces.

References: [Spivak IV, Ch.9, Add.2], [Hopf], [Jost]

6.1. Submanifolds and surfaces. In order to formulate Hopf’s theorem, we need the

notion of an immersed sphere. As a first step, we introduce the domain of this map. In

contrast to the local theory of differential geometry, this amounts to introducing the concept

of a surface globally. We do this rightaway in the smooth class, not in the topological

category.

If you know about manifolds then a surface is a 2-manifold, you can skip the folowing

subsection.

Recall that an n-dimensional submanifold Σn ⊂ Rm can locally be described as the zero

set of a smooth mapping ϕ, that is, for each p ∈ Σ there is a neighbourhood V ⊂ Rm, and

a smooth mapping ϕ : V → Rm−n, such that

• V ∩ Σ = {p ∈ V : ϕ(p) = 0} and

• dϕ has rank m− n on V .

The second condition serves to avoid non-differentiable points, bifurcations, and to make

Σ truly n-dimensional. We call a submanifold of dimension n = 2 a surface.

A topology on Σ is defined by declaring open sets in Σ as sets which are obtained by

intersecting Σ with ambient open sets. This allows to introduce notions like continuous

functions on a surface, or continuous functions between surfaces (give the definitions!).

In order to introduce differentiable terminology we need the parametric picture. For each

point p ∈ Σ there is an open neighbourhood V α ⊂ Rm such that there is a differentiable

homeomorphism fα : Uα → Σ∩V α, where dfα has rank n; then fα is called a parameteriza-

tion. Here α is in some index set A, such that all parameterizations cover, Σ =
⋃

α∈A fα(Uα).

Clearly, if Σ is compact then finitely many parameterizations suffice.

Examples. 1. By the implicit mapping theorem, each point has a neighbourhood such that,

up to reindexing, the surface can locally be represented as a graph f(x, y) := (x, y, h(x, y));
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thus parameterizations of submanifolds always exist.

2. For surfaces, we will need conformal parameterizations f where ∂1f ⊥ ∂2f and |∂1f |2 =

|∂2f |2 6= 0.

3. The two conformal stereographic projections

(75) f±(x, y) =
±1

1 + x2 + y2

(
2x, 2y, x2 + y2 − 1

)
suffice to parameterize all of S2. (What is the similar formula for Sn?)

Given a pair of parameterizations fα, fβ we can define a change of coordinates or transition

map

τβα := (fβ)−1 ◦ fα : Uα ∩ (fα)−1(Uβ) → Uβ ∩ (fβ)−1(Uα).

Then τβα is a diffeomorphism. This important property is usually proved as follows: By

extending fα, fβ from an n-dimensional domain to an m-dimensional domain, a diffeomor-

phism of m-dimensional sets is defined; its restriction to the n-dimensional subsets remains

a diffeomorphism. Let us also mention that for abstract manifolds, differentiability of the

transition maps becomes a definition.

This allows us to define:

• If Σ has a covering with parameterizations {fα : α ∈ A} such that all transition maps

have positive determinant then Σ is called oriented.

• A differentiable map g : Σ → R is a map such that composition with all parameterizations,

g ◦ fα, is differentiable.

• Similarly, a map between surfaces ϕ : Σ1 → Σ2 is differentiable when its composition

with parameterizations is differentiable: f−1
2 ◦ϕ ◦ f1 is differentiable where fi are arbitrary

local parameterizations of Σi.

Remark. One may explicitely define particular reference surfaces Σg ⊂ R3 of genus g ∈
{0, 1, 2, . . .}, where the genus is the number of holes or handles attached to S2.

Theorem (Classification of surfaces, Möbius 1870 (idea)). Each compact oriented surface

is diffeomorphic to a surface Σg, where g ∈ {0, 1, 2, . . .}.

6.2. Vector fields on surfaces and indices. The tangent space of a submanifold Σ at

a point is easy to define for an implicit representation ϕ in a neighbourhood of p:

TpΣ = ker dϕp.

Parametrically, if p = fα(x), then TpΣ = dfα
x (Rn), independently of the parameterization

fα chosen. In fact

(76) dfα(Xα) = dfβ(Xβ) ⇔ dτβα(Xα) = (dfβ)−1dfα(Xα) = Xβ
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(where the differentials are taken at which point?). That is, tangent vectors transform

with the Jacobian of the transition map. A tangent vector can always be represented as a

tangent vector to a curve.

Definition. A vector field on Σ is a smooth map Y : Σ → Rm such that Y (p) ∈ TpΣ.

In terms of parameterizations, we can always write Y = dfα(Xα), where Xα transforms as

in (76).

To analyse singularities of vector fields on surfaces we will make use of the following pro-

perty:

Lemma 41. If h : I → S1 ⊂ R2 is continuous then there is a function h̃ : I → R, called

the lift of h, such that h(t) = (cos h̃(t), sin h̃(t)). The mapping h̃ is unique up to addition

of integer multiples of 2π.

This lemma is a special case of the path liftling property of covering spaces. We now want

to address of a non-simply connected domain. In the one-dimensional case such a domain

is S1 which we also view as the quotient space of [0, 2π] where endpoints identified, i.e.

S1 = [0, 2π]
/
{0} ∼ {2π}.

Then there is no continuous lift, but only a lift with a “gap” at a point, say at t = 0:

Definition. The degree of h : S1 → S1 is the integer

deg(h) :=
1

2π

(
lim
t↗2π

h̃(t)− lim
t↘0

h̃(t)
)

∈ Z,

where h̃ is the lift of the function h restricted to I := (0, 2π).

Examples. 1. The maps h(t) :=
(
cos(2πkt), sin(2πkt)

)
= e2πikt have degree k ∈ Z.

2. For a closed curve of length L, parameterized with constant speed L/2π we can consider

h(t) := c′(t)/|c′(t)|. Then deg(h) is called the turning number. A theorem, first proved

rigorously by Hopf, says that a simple closed curve has turning number ±1.

3. The degree is the sum of the images of h, signed by orientation.

19. Lecture, Tuesday 22.6.10

Definition. (i) A vector field Y with isolated singularities on U ⊂ Rn or on a submani-

fold Σ is a vector field which is defined on U or Σ except for a set of isolated points.

(ii) A vector field Y has isolated zeros if Y is nonzero except at isolated points.

Note that on a compact surface an isolated set is finite.
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Example. If X has isolated zeros, then the unit vector field Y := X/|X| has isolated

singularities.

Definition. (i) [R2-case:] Suppose X : U → R2 is a vector field with isolated singularities

and zeros. Then the index of X at x ∈ U is the degree of the map

(77) indx X := deg

(
t 7→

X
(
x + ε(cos t, sin t)

)∣∣X(x + ε(cos t, sin t)
)∣∣
)

, t ∈ [0, 2π]
/
{0} ∼ {2π},

where ε > 0 is chosen such that X has no zero in Bε(x) \ {x}.
(ii) [Surface case:] On an oriented surface Σ, the index of the vector field Y at p = fα(x)

is the index of Xα where Y = dfα(Xα).

Examples. A constant vector field has index 0.

The radial vector field in R2, X(x) = x/|x| has index 1 at 0.

Let us state a simple but important property: Two vector fields

X, Y : {0 < |x| < r} ⊂ Rn → Rn \ {0}

are called homotopic if there exists a continuous map

H : I × {0 < |x| < r} → Rn \ {0} with H(0, x) = X(x) and H(1, x) = Y (x).

Lemma 42. The index is invariant under homotopies of vector fields.

Proof. The function t 7→ indx H(t, x) is continuous and integer valued, hence constant. �

Consequences of this property include:

• Any continuous vector field X at a point p where X(p) 6= 0 has index 0. Indeed, the

continuity of X implies that H(t, x) := tX(p) + (1 − t)X(x) is nonzero on small balls

about p.

• Definition (i) is independent of ε: Consider H(t, x) := X(tx), where this time the homo-

topy runs over t ∈ [ε1, ε2], say.

• The index (77) can be defined more generally with respect to a curve c(t), replacing the

circle of radius ε about p, i.e., indx X := deg( X
|X| ◦ c(t)). The curve c can be any smooth

curve homotopic to ϕ contained in a punctured disk about p where X has no zeros or

singularities. That is, the curve c must only have winding number +1 w.r.t. p.

We also note that (ii) is independent of the parameterization; indeed, the index is invariant

of orientation preserving diffeomorphisms.

We give another example for the index which we need lateron. Suppose Φ: C → C is

holomorphic. We can consider Φ as a vector field on C = R2. If Φ is not constant, then its

zeros are isolated and so we can calculate the index of the vector field.
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Lemma 43. Let n ∈ N0.

(i) The function Φ: C → C, Φ(z) := zn, has index n at 0.

(ii) Suppose a complex power series Φ(z) :=
∑

k≥n akz
k with an 6= 0 converges in a neigh-

bourhood of 0. Then Φ has index n at 0.

Proof. (i) We have h(t) := Φ(εeit)/|Φ(. . .)| = (εeit)n/εn = eint. Then h̃(t) = int and

ind Φ(0) = deg h(0) = n.

(ii) We write

Φ(z) = anz
n

(
1 + z

(an+1

an

+ z
an+2

an

+ . . .
))

=: anz
n
(
1 + r(z)

)
,

where r also converges in a neighbourhood of 0. But 0 < |r| < 1 for 0 < |z| sufficiently

small, and so H(t, z) = anz
n
(
1+tr(z)

)
is a nonzero homotopy from anz

n to Φ. Since zn has

degree n, also the rotated (and dilated) field anz
n has degree n, and so the result follows

again from the homotopy invariance of the index. �

6.3. Poincaré-Hopf index theorem. Later, we will make use of the Poincaré-Hopf index

theorem although we cannot provide the complete proof here. We need a property of

compact surfaces, namely that they can be triangulated. In the language of algebraic

topology, a surface is a simplicial complex. We assume this property here.

Definition. Suppose a surface Σ has a finite triangulation with F faces, E edges and V

vertices. Then the Euler characteristic of Σ is the number

χ(Σ) := V − E + F ∈ Z.

The Poincaré-Hopf Theorem can be considered a quantitative version of the hairy ball

theorem, which says that on the even-dimensional spheres all vector fields have zeros.

Theorem 44 (Poincaré-Hopf). For an oriented compact surface Σ, the sum of the indices

of any vector field Y with isolated zeros agrees with the Euler characteristic,

χ(Σ) =
∑

p:Y (p)=0

indp Y.

The Euler characteristic is purely topological, i.e., the concept of a continuous, topological

surface is sufficient to define it. Although the index can be defined for continuous vector

fields as well, the proof of the theorem represents it with an integral over curvature quan-

tities, and so requires differentiability. Thus the right hand side belongs to the setting of

differentiable analysis.
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Easy part of proof. Given a triangulation, let us define a particular vector field Y on each

triangle: It has zeros at the vertices, the midpoints of the edges, and at a distinguished

point in the interior of each triangle.

To define Y , take a source of index 1 at the point in the interior of the triangle, and a

sink of index 1 at each vertex, while on each edge midpoint there is a “saddle point” of

index −1. On incident triangles such a vector field can match continuously. Thus the index

sum of Y coincides with χ(Σ) = V − E + F . �

The hard part of the proof is to verify that the same index arises for any vector field. It

depends on a local version of the Gauss-Bonnet theorem.

The Euler characteristic of a surface can also be expressed in terms of the genus g ∈ N0:

It is χ(Σ) = 2− 2g (see problems).

Remark. The theorem generalizes to arbitrary dimension. To define the Euler characteristic,

the manifold must be represented as a simplicial complex, having cells between dimension

0 (vertices) and n. Then

χ(Σ) := #(0-cells)−#(1-cells)± . . . + (−1)n#(n-cells).

On the other hand, the degree of a vector field can be defined in arbitrary dimensions as

the integral over the oriented area of the normalized vector field, divided by the area of the

image sphere. The Gauss-Bonnet theorem in the proof can be replaced by Stoke’s theorem,

see [Spivak I, ch.11, Thm.28/Cor.29].

20. Lecture, Thursday 24.6.10

6.4. Line fields. In order to consider curvature lines, we want to generalize the index from

vector fields to line fields.

Definition. (i) Real projective space is RP n−1 := Sn−1/± = {1-dimensional subspaces of Rn}.
(ii) A line field on U ⊂ Rn is a map from P : U → RP n−1.

(iii) A line field on a submanifold Σ ⊂ Rm is a map P : Σ → RPm−1 such that P (p) ⊂ TpΣ.

Again, we will consider line fields with isolated singularities. In the context of integrability,

a line field is also called a one-dimensional distribution.

Example. 1. Each vector field X with isolated zeros induces a line field with isolated singula-

rities by setting P (x) := span{X(x)} for x such that X(x) is nonzero. However, conversely

there are many line fields which do not come from vector fields.

2. On a surface of negative curvature immersed into R3, the principal curvatures satisfy

κ1 < 0 < κ2, say. Each of the respective principal curvature directions defines a line field.
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In the case n = 2, we consider the projective line RP 1 as the semicircle S1 with opposite

points identified. Hence h : I → RP 1 again has a lift

h̃ : I → R, with h(t) =
(
cos h̃(t), sin h̃(t)

)
,

this time unique up to adding inter multiples of π. The degree is

deg h :=
1

2π

(
lim
t↗2π

h̃(t)− lim
t↘0

h̃(t)
)

∈ Z/2,

where now half-integer values can occur. Thus, as for vector fields the index is

indx P := deg
(
t 7→ P

(
x + ε(cos t, sin t)

))
∈ Z/2.

Let us discuss the case of curvature lines specifically. An umbilic [Nabelpunkt] of a surface

Σ2 ⊂ R3 is a point where both principal curvatures agree. Exactly at umbilic points are

all directions principal curvature directions.

Examples. 1. Spheres have all points umbilical.

2. Suppose an embedded surface Σ ⊂ R3 is invarinat under a k-fold rotation, where k ≥ 3.

Then the axis of rotation ` meets Σ perpendicularly and all points of Σ ∩ ` are umbilical.

If an umbilic point p ∈ Σ is isolated, then the two principal curvatures are distinct in a

neighbourhood U of p. Thus the direction for the smaller principal curvature, say, defines

a line field P1 in U with a certain index indp P1. The larger principal curvature defines

another line field P2. But P2 is orthogonal to P1, and so h̃2 = h̃1 + π/2 or h̃2 = h̃1 − π/2,

and so the index of P1 and P2 agrees,

indp P1 = indp P2.

We call this number the index of the curvature line field of Σ at p.

The Poincaré-Hopf Theorem 44 extends to line fields:

Theorem 45. Suppose a compact oriented surface Σ has a line field P with isolated sin-

gularities {p1, . . . , pk}. Then

χ(Σ) =
k∑

i=1

indpi
P.

We want to indicate how this result can be derived from the Poincaré-Hopf Theorem for

vector fields, but we will be sketchy on covering spaces. See [Spivak III, Ch.4, Addendum 2]

for more details.

Sketch of proof. The idea is to construct a surface Σ̃ so that the line field P on Σ lifts to

a vector field V on Σ̃. The basic observation is that going around a singularity twice we

always return with the same direction of the line field. So for Σ̃ we take the branched double
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cover of Σ, which has a 2 : 1 projection to Σ, except at the k singular branch points which

project 1 : 1 to the singular points p1, . . . , pk ∈ Σ.

Let us first describe how Σ̃ is obtained from Σ locally, in a neighbourhood of a singularity

p with index indp P = n/2 ∈ Z/2:

• We cut Σ along a ray to p

• and shrink the angle at p from 2π to π; the boundary consists of two copies of the ray.

• We glue in a second copy of the same surface piece along the boundary.

Then globally we can think of extending the cuts to a system of cuts between pairs of

singular points, such that the cuts do not intersect. The resulting abstract surface is inde-

pendent of the cuts chosen. This description of a branched cover is traditional in Riemann

surface theory and goes back to Riemann.

To compute the index of the vector field V on Σ̃, consider the angle function h̃. Suppose

P has index indp P . After shrinking the angle, we are left with indp P − 1/2 as the angle

difference, so after gluing in the second copy we get twice of that, namely 2 indp P − 1.

Thus V has index

(78)
∑

ind V =
∑

(2 ind P − 1) =
(
2
∑

ind P
)
− k.

On the other hand, consider a triangulation of Σ whose vertex set includes p1, . . . , pk. Then

a triangulation of Σ̃ is obtained by doubling the faces, edges, and the vertices different from

the singular set, so that

(79) χ(Σ̃) = Ṽ − Ẽ + F̃ = (2V − k)− 2E + 2F = 2χ(Σ)− k.

Comparing (78) with (79) we see that indeed χ(Σ) =
∑

ind P . �

It is amazing that the following is not yet known:

Conjecture (Loewner). The index of the curvature line field P of a smoothly immersed

surface Σ2 ⊂ R3 at an isolated singularity p ∈ Σ satisfies indp P ≤ 1.

Since a sphere has Euler characteristic 2, the Poincaré-Hopf theorem then implies that any

immersed sphere should have at least two umbilics. This consequence is the so-called Ca-

rathéodory conjecture (from 1924). The two conjectures have only been proved for analytic

immersions or for surfaces which are boundaries of convex sets.

See http://en.wikipedia.org/wiki/Carath%C3%A9odory_conjecture

21. Lecture, Tuesday 29.6.10
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6.5. Integrability conditions for hypersurfaces.

Definition. An immersed n-dimensional submanifold in Rn+k is a mapping ϕ : Σ → Rn+k,

where Σn ⊂ Rm is a submanifold and ϕ has a differential of rank n.

By the chain rule, the local representations Fα := ϕ ◦ fα : U → Rn+k, α ∈ A, are dif-

ferentiable mappings with a Jacobian of rank n. We will often write M for an immersed

surface ϕ(Σ), but we should keep in mind that M is not a subset of Rn+k, but denotes

a mapping. Only when ϕ is an embedding, M can equally well be considered a subset,

namely a submanifold.

If the codimension k equals 1 and submanifold is oriented we can choose a normal ν. Hence

all the data of local differential geometry is defined for each chart, such as the fundamental

forms

gα(Xα, Y α) = 〈dFα(Xα), dFα(Y α)〉 bα(Xα, Y α) =
〈∑

ij

(Xα)i(Y α)j ∂ijF
α, ν
〉
,

or the Weingarten map, etc. With respect to the standard basis (e1, . . . , en) on Uα, these

forms again have matrix elements, for instance

gα
ij := 〈∂iF

α, ∂jF
α〉, bα

ij := 〈∂ijF
α, ν〉 for 1 ≤ i, j ≤ n.

Due to the invariance under the change of coordinates, principal curvatures and the mean

curvature are invariant of parameterization, and the images of curvature lines agree. In the

following, we will not keep track of the index α ∈ A. In order to have notation consistent

with the differential geometry class, we allow ourselves to write f : U → Rm in place of a

specific parameterization Fα.

A standard technique in elementary differential geometry is to decompose into tangential

and normal part. The normal part of the second derivatives is 〈∂ijf, ν〉 = bij. To decompose

d2f ∈ Tf ⊕Nf , let us assign a name to the tangential part (denoted with >):

Definition. The Christoffel symbols of an immersion f : U → Rm are the functions

Γk
ij : U → R for 1 ≤ i, j, k ≤ n, defined by

(80)
(
∂ijf(p)

)>
=
∑

k

Γk
ij(p)∂kf(p).

The Schwarz lemma gives Γk
ij = Γk

ji. For an affine hyperplane, the Christoffel symbols

vanish if and only if the parameterization is by an affine map. What would the analogous

statement be for a cylinder?
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Lemma 46. The Christoffel symbols can be computed from the first fundamental form g

and its derivatives alone:

(81) Γl
ij =

1

2

n∑
k=1

glk
(
∂igjk + ∂jgik − ∂kgij

)
for 1 ≤ i, j, l ≤ n

Proof. We calculate the terms on the right hand side:

∂igjk = ∂i〈∂jf, ∂kf〉 = 〈∂ijf, ∂kf〉+ 〈∂jf, ∂ikf〉

∂jgki = 〈∂jkf, ∂if〉+ 〈∂kf, ∂jif〉

−∂kgij = −〈∂kif, ∂jf〉 − 〈∂if, ∂kjf〉

The sum is
1
2
(
∂igjk + ∂jgik − ∂kgij

)
= 〈∂ijf, ∂kf〉

∂kf∈Tf
=

〈
(∂ijf)>, ∂kf

〉
=
〈∑

µΓµ
ij∂µf, ∂kf

〉
=
∑

µ

Γµ
ijgµk.

Hence, multiplying with the inverse matrix g−1 gives the desired representation∑
k

1
2
(
∂igjk + ∂jgik − ∂kgij

)
gkl =

∑
k,µ

Γµ
ijgµkg

kl =
∑

µ

Γµ
ijδ

l
µ = Γl

ij . �

Invoking also (5), we can express all surface quantities in terms of the fundamental forms:

Theorem 47. Let f : Un → Rn+1 be an immersed hypersurface with normal ν : U → Sn.

Then (f, ν) satisfies a system of partial differential equations on U , called hypersurface

equations: The Gauss equation [Gaussche Ableitungsgleichung]

(82) ∂ijf =
∑

k

Γk
ij ∂kf + bijν for 1 ≤ i, j ≤ n

and the Weingarten formula

(83) ∂jν = −
∑
i,k

gikbkj∂if for 1 ≤ j ≤ n.

Conversely we can ask if the fundamental forms g (thus Γ) and b determine a hypersur-

face f . In general this is not true. However, it turns out that provided two more equations

are satisfied, the problem can be solved. Let us first state these so-called integrability or

compatibility conditions :

Theorem 48. Each solution (f, ν) of the hypersurface equations (82)(83) satisfies the

Gauss equations

(84) ∂iΓ
s
jk − ∂jΓ

s
ik +

n∑
r=1

Γr
jkΓ

s
ir − Γr

ikΓ
s
jr =

n∑
r=1

(
bjkbir − bikbjr

)
grs für 1 ≤ i, j, k, s ≤ n,

and the (Mainardi-)Codazzi equations

(85) 0 = ∂ibjk − ∂jbik +
n∑

s=1

Γs
jkbis − Γs

ikbjs für 1 ≤ i, j, k ≤ n.
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It is sufficient to consider i < j for both equations.

These conditions are not implied by the hypersurface equations. The left hand side of the

Gauss equation represents the Riemann curvature tensor Rs
ijk and is the starting point of

Riemannian geometry.

Proof. The proof is by calculation. It is based on a simple idea: The Schwarz lemma implies

at each point of U

(86) ∂ijkf = ∂jikf for all 1 ≤ i, j, k ≤ n;

this is nontrivial for i 6= j, so we may restrict to i < j. We compute these derivatives in

terms of the frame ∂1f, . . . , ∂nf, ν:

∂i∂jkf
(82)
= ∂i

(∑
s

Γs
jk ∂sf + bjkν

)
=
∑

s

(
∂iΓ

s
jk ∂sf + Γs

jk∂isf
)

+ ∂ibjk ν + bkj∂iν

(82)(83)
=

∑
s

∂iΓ
s
jk ∂sf +

∑
s

Γs
jk

(∑
rΓ

r
is∂rf + bisν

)
+ ∂ibjk ν −

∑
r,s

bjk

(
birg

rs∂sf
)

=
∑

s

(
∂iΓ

s
jk +

∑
r

(
Γr

jkΓ
s
ir − bjkbirg

rs
))

∂sf +
(∑

sΓ
s
jkbis + ∂ibjk

)
ν

To obtain the similar expression for ∂j∂ikf , all we need to do is to swap i and j. We now

write (86) in terms of the frame. For each i, j, k this gives n equations for the tangential part

(the vectors ∂sf are linearly independent!), and one for the normal part. The n tangential

equations give the Gauss equations, the normal component the Codazzi equation. �

It is interesting to note that the relations ∂ijν = ∂jiν do not yield any new equations.

To explain the significance of the compatibility equations, let us mention:

Theorem (Fundamental Theorem of Surfaces, Bonnet). Let U ⊂ Rn (with n ≥ 2) be

simply connected, p ∈ U . Suppose symmetric matrix valued functions g, b : U → Rn2
are

given, where g is positive definit, such that the compatibility equations (84) and (85) hold.

Then there exists a solution f : U → Rn+1, ν : U → Sn of the hypersurface equations (82)

(83). It is unique for given initial values f(p), dfp, ν(p) subject to the obvious conditions

gp(X, Y ) = 〈dfp ·X, dfp · Y 〉, |ν(p)| = 1, ν(p) ⊥ dfp(X) for all X,Y ∈ Rn.
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6.6. Conformal parameterization. Locally, we can assume a conformal parameteriza-

tion, meaning the following:

Theorem. Let f : U → M ∈ Rm be a parametrization of an immersed surface and p =

f(0). Then the image of a neighbourhood of 0 can be parameterized conformally by f̃ : V →
M ∈ Rm, i.e., there is a function λ : V → (0,∞) such that

gij(x) = λ(x) δij, i = 1, 2.

If f is already real analytic then there is a simple proof going back to Gauss, see [Spivak

IV, Ch. 9, Add. 1]. In fact, surfaces of constant mean curvature always have a real analytic

parameterization [Spivak V, Ch. 10,9, Thm. 13]. However, the proof of the theorem in the

smooth case is a lot more involved.

22. Lecture, Thursday 1.7.10

In conformal coordinates, the equations for H and K simplify to

(87) H =
b11 + b22

2λ
, K =

b11b22 − b2
12

λ2
.

We claim the Christoffel symbols of a conformally parameterized surface are

(88) Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 =
1

2λ
∂1λ, Γ2

22 = −Γ2
11 = Γ1

12 = Γ1
21 =

1

2λ
∂2λ,

Indeed, we calculate from definition (81), together with g−1 = (1/λ)δ:

Γi
ii =

1

2λ
∂igii =

1

2λ
∂iλ for i = 1, 2,

Γk
ii =

1

2λ

(
2∂igik − ∂kgii

)
= − 1

2λ
∂kgii = − 1

2λ
∂kλ for k 6= i,

Γk
12 = Γk

21 =
1

2λ

(
∂1g2k + ∂2g1k − ∂kg12

)
=

 1
2λ

∂2λ, for k = 1,

1
2λ

∂1λ, for k = 2.

For n = 2, there are two Codazzi equations (85), namely (i, j, k) = (1, 2, 1) or (1, 2, 2).

Moreover, for conformal coordinates these equations simplify:

−∂1b21 + ∂2b11 =
2∑

s=1

Γs
21b1s − Γs

11b2s = Γ1
21b11 + (Γ2

21 − Γ1
11)b12 − Γ2

11b22

(88)
=

∂2λ

2λ
(b11 + b22)

(87)
= ∂2λ H

−∂1b22 + ∂2b12 =
2∑

s=1

Γs
22b1s − Γs

12b2s = Γ1
22b11 + (Γ2

22 − Γ1
12)b12 − Γ2

12b22

(88)
= −∂1λ

2λ
(b11 + b22)

(87)
= −∂1λ H

(89)
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In order to eliminate the derivatives of λ, we differentiate λH = (b11 + b22)/2:

∂1λ H + λ ∂1H =
∂1b11 + ∂1b22

2
and ∂2λ H + λ ∂2H =

∂2b11 + ∂2b22

2

In the Codazzi equations (89) we substitute the derivatives of λ by the last equation and

obtain

−∂1b22 + ∂2b12 = λ ∂1H − ∂1b11 + ∂1b22

2
and ∂2b11 − ∂1b12 = −λ ∂2H +

∂2b11 + ∂2b22

2
.

Hence for any conformally immersed surface we have

(90) λ ∂1H = ∂1
b11 − b22

2
+ ∂2b12 and − λ ∂2H = ∂2

b11 − b22

2
− ∂1b12.

6.7. Hopf’s theorem for immersed spheres. For H constant, we can regard (90) as

Cauchy-Riemann equations and derive geometric consequences:

Lemma 49. (i) If f : U2 → R3 is a conformal local parameterization of a surface with

constant mean curvature then the Hopf function

Φ: U → C, Φ(z) :=
b11(z)− b22(z)

2
− ib12(z)

is holomorphic.

(ii) Let M be a surface immersed to R3 with constant mean curvature. Then either the

umbilics of M are isolated or all points of M are umbilics.

Proof. (i) If H is constant then the left hand sides of (90) vanish, and so these equations

represent the Cauchy-Riemann equations 0 = ∂1 Re Φ− ∂2 Im Φ = ∂2 Re Φ + ∂1 Im Φ.

(ii) Consider the Hopf function Φ of a local parameterization f of M . The zeros of Φ

coincide with the umbilics of the surface:

|Φ|2 =
(b11 − b22)

2

4
+ b2

12 =
(b11 + b22)

2

4
+ b2

12 − b11b22
(87)
= λ2(H2 −K) = λ2

(κ1 − κ2

2

)2

.

The analytic function Φ either vanishes identically, or has isolated zeros. Consider the

subset S of those points of M which have a neighbourhood where the Hopf function of

some parameterization vanishes identically. By definition, this subset is open, but it is also

closed by analyticity. Since M is connected S is either all of M , or S is empty and the

zeros of M are isolated. �

To calculate the index of the curvature line field, let us now characterize curvature directions

in terms of the local Hopf function Φ. In conformal coordinates,

(91) Si
j =

∑
k

gikbkj =
∑

k

1

λ
δikbkj =

1

λ
bij
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and so a vector X = (X1, X2) ∈ R2 \ {0} is a curvature direction at p = f(x) if and only if

∃ µ ∈ R : SX =
1

λ

(
b11 b12

b12 b22

)(
X1

X2

)
=

1

λ

(
b11X1 + b12X2

b12X1 + b22X2

)
!
= µ

(
X1

X2

)
⇔ b11X1X2 + b12X

2
2 = b12X

2
1 + b22X1X2 ⇔ −b12X

2
1 + (b11 − b22)X1X2 + b12X

2
2 = 0.

(Which value must be chosen for µ when we read the equivalence from the right to the left?

Distinguish the cases X1 = 0, X2 = 0, X1X2 6= 0.) For a general, non-conformal metric,

the same condition is more involved to state; see, for instance, [Spivak III, ch.3, (D)].

Therefore the vector field X on U ⊂ R2 represents curvature directions if and only if

0 = −b12X
2
1 + (b11 − b22)X1X2 + b12X

2
2

= Im

[(b11 − b22

2
− ib12

)(
X2

1 + 2iX1X2 −X2
2

)]
= Im

(
Φ(z)(X1 + iX2)

2
)
.

Remark. Note that z 7→ z2 has Im z2 = 0 exactly on the real and imaginary axis. So for Φ

nonzero, the condition Im(Φ(z)(X1(z)+iX2(z))2) = 0 does select two orthogonal directions

at each point, which point in the directions arg(Φ(z)), arg(Φ(z))+π/2. This indicates that

the set of two curvature lines can be expected to have a description in terms of the purely

real directions for a quadratic form. Moreover, there is a global form of this quadratic form,

defined on the “underlying Riemann surface” for our problem, wich is the Hopf differential

Φ(x)dz2.

For a complex number w let arg w denote an angle which w makes with the x-axis, so that

w = |w| exp(i arg w). Note that Im w = 0 if and only if arg w ∈ πZ. Thus X = X1 + iX2 is

a principal curvature direction at z if and only if there exists m ∈ Z such that

mπ = arg
(
Φ(z)X2

)
= arg Φ(z) + 2 arg X

or

(92) arg X = −1

2
arg Φ(z) +

mπ

2
.

Proposition 50. Suppose f : U → R3 is a conformal immersion into a surface M of

constant mean curvature H with Hopf function Φ. Let p = f(0) be an isolated umbilic

of M , so that Φ has a zero of order n at 0, that is,

∃n ∈ N : Φ(z) =
∑
k≥n

akz
k an 6= 0, for z ∼ 0.

Then the index of the curvature line field at p is −n/2 < 0.

In particular, the curvature line field satisfies the Loewner conjecture.
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Proof. Let c : [0, 2π] → R2 be a small circle around 0. To compute the index of the curvature

line field, we let ϑ : [0, 2π] → R be the angle between the curvature line field and the x-axis.

Then 2π ind(p) = ϑ(2π)− ϑ(0). Then by (92) we have

ϑ(t) = −1

2
arg Φ(c(t)) +

mπ

2

where m ∈ Z is constant, by continuity, and so

2π ind(0) = ϑ(2π)− ϑ(0) = −1

2

(
arg Φ(c(2π))− arg Φ(c(0))

)
.

But the function Φ is holomorphic by Lemma 49. Hence it has a power series expansion,

as required in Lemma 43(ii), and so the latter lemma gives

arg Φ(c(2π))− arg Φ(c(0)) =
Φ(c(2π))

|Φ(c(2π))|
− Φ(c(0))

|Φ(c(0))|
= 2πn. �

Theorem 51 (H. Hopf 1951). Suppose M is a topological sphere, immersed into R3 with

constant mean curvature H ≥ 0. Then M is a sphere of radius 1/H.

Proof. If the umbilic points of M are dense, then M has constant principal curvatures

κ = H and so M is a distance sphere of radius 1/H.

By Lemma 49 otherwise the umbilic points are isolated. So on our compact surface the

umbilics form a finite set {p1, . . . , pk}.

Consider the index of the curvature line field P at the points pi, as defined in (6.4). For

our surface with constant mean curvature we showed in Prop. 50 that each umbilic has a

negative index indpi
P < 0. So the Poincaré-Hopf Theorem 45 gives

(93) χ(M) =
∑

i

indpi
P ≤ 0,

contradicting χ(M) = 2 for a sphere. �

23. Lecture, Tuesday 6.7.10

We can also say something about other topological types:

Theorem 52. Suppose M is a surface immersed into R3 with constant mean curvature H.

(i) If M is a torus, then M does not have umbilic points.

(ii) If M is a surface of genus g ≥ 2, then M has umbilic points.

Proof. Again, if M were totally umbilic with H constant then M would be a sphere, which

is impossible. So by Lemma 49 the umbilic points are isolated. Then (93) is defined.

By Prop. 50 the index of any umbilic is negative. Therefore, (93) is negative if and only if

umbilic points exist. This gives:
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(i) A torus has Euler characteristic 0 and so no umbilic points can exist.

(ii) Due to
∑

ind P = χ(M) = 2− 2g ≤ −2 umbilics must exist. �

Note that (i) gives that the curvature lines are globally orthogonal on a torus, and so form

a nice rectangular net.

Hopf’s theorem makes essential use of dimension 2 –for conformal parameters– and of co-

dimension 1 –for the Codazzi equation. However, it generalizes to other ambient spaces. In

order to obtain suitably good Codazzi equations, the ambient space must be sufficiently

symmetric:

• In the space forms H3 and S3, the Codazzi equation is simple to state, and so constant

mean curvature spheres are again distance spheres. For S3, this was proved by Almgren

in 1966 (see also “Minimal surfaces in S3” by Lawson 1970, Lemma 1.2). See [Jost, Cor.

1.4.7].

• For the product spaces Σ(κ)×R, where Σ(κ) is a surface of constant curvature κ. Abresch

and Rosenberg in 2004 generalized the Hopf differential, and so again the topological sphe-

res with constant mean curvature are the rotationally invariant spheres in these spaces,

which are classified as solutions of an ODE up to isometry.

• Abresch claimed the same result for the more general homogeneous 3-manifolds E(κ, τ),

which include the products and S3 (but not H3). In this case again the spheres are cha-

racterized as surfaces invariant under rotation about the fibres of these spaces, and so are

uniquely determined ODE solutions. A reference for the proof is “Constant mean curva-

tyure surfaces in homogeneous 3-manifolds” by Daniel/Hauswirth/Mira from 2009. There

is further work by Daniel and Mira on the case of the homogeneous 3-manifold Sol. • The

same technique also applies to other geometric problems. One is Nitsche’s theorem that

any constant mean curvature disk which meets a unit ball orthogonally must be part of the

sphere. Such surfaces arise for the partitioning problem in the ball, where an interface of

least area is sought which separates two components of given volume. See [Jost, Cor 1.4.6].

After the theorem’s by Alexandrov and Hopf were achieved in the 1950’s, it appeared to

many people that also all compact surfaces, immersed to R3 with constant mean curvature,

should be distance spheres. This was known as the Hopf conjecture, and more people tried

to prove it than to find counterexamples. Only in the 1980’s it became clear that the Hopf

conjecture is not true:

• In 1986 Wente found constant mean curvature tori (g = 1), and in some sense all of these

were classified by Pinkall and Sterling in 1989.

• Kapouleas in 1991 found constant mean curvature surfaces of genus g ≥ 3 by perturbing

a set of touching spheres, so that the touching is replaced by small unduloidal or nodoidal

necks. In 1993 he also found examples with g = 2 by “fusing” two Wente tori together.

Of course, all these examples cannot be Alexandrov embedded.
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6.8. Problems.

Problem 27 – Stereographic projection:

Let f± be projection of Sn from the north or south pole onto the equatorial plane. Check geome-
trically (no computation!) that the transition map τ(x) := (f−1

+ ◦ f−)(x) = x/|x|

a) is conformal.

b) Is τ orientation preserving?

Problem 28 – Singularities of the curvature line field:

Use images of line fields with singularities of low index such as p.109 in Hopf, Differential geometry
in the large.

a) Assuming these represent a curvature line field of some surface, draw the other curvature line
field and convince yourself that it has the same index.

b) Can you imagine an example of a surface with the depicted curvature line field? Consider only
the indices admitted by the Loewner conjecture.

Problem 29 – Index of spherical vector fields:

Draw unit vector fields on S2. It can helps to regard them as the stereographic projection of
vector fields on R2 (see back side!).

a) With singularities at north and south pole (recall from class).

b) With only one singularity – what must be its index?

c) With three singularities. (A strategy is to merge singularities.)

d) Can you find similar vector fields on Sn?

Problem 30 – Euler characteristic and genus:

a) Position a torus of revolution in space suitably, so that you can the Poincaré-Hopf theorem for
the torus by choosing the gradient vector field of the height function to compute the index.

b) Now do the same for a nice model of an oriented surface Σg ⊂ R3 of genus g ∈ N0, homeo-
morphic to a sphere with g handles attached. Show that the Euler characteristic is

χ(Σ) = 2− 2g.

Problem 31 – Euler characteristic of spaces:

a) If you happen to know the spaces, calculate the Euler characteristic of a Klein bottle and of
RP 2.

b) If you know about stereographic projection: Calculate the Euler characteristic from the 4-
dimensional cube (also called hypercube) or 4-dimensional tetrahedron.
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c) Is there a vector field on S3 without zeros?
Hint: Try to find X(x) in terms of the coordinates of x.

Problem 32 – Euler characteristic of islands:

a) Consider an island with no lakes. Show that # peaks −# passes +# sinks = 1, provided
all these numbers are finite. Here, peaks are local maxima of height, sinks local minima, and
passes critical points which are neither peaks nor sinks.
Hint: Poincaré-Hopf. Which vector field is appropriate?

b) Find an island with 3 peaks, 1 pass, and no sinks. Correct the formula in part a) (!).

c) Now admit lakes and show, with a correction yet to be included, that

# peaks−# passes + # sinks = 1−# lakes .

Problem 33 – Symmetries and umbilics:

Let f : U2 → R3 be a two-dimensional surface. For simplicity, suppose f(p) = 0 for some p ∈ U

such that Tpf agrees with the xy-plane.

a) Let R3 : R3 → R3 be 120◦ rotation about the z-axis. Prove: If f(U) is invariant under the
rotation R, then p is an umbilic [Nabelpunkt].

b) Does part a) hold for an arbitrary rotation Rk of angle 2π/k where k = 2, 3, . . .?

c) Let R6 : R3 → R3 be rotation by 60◦ about the z-axis, and S reflection in the xy-plane. Prove:
If f(U) is invariant under R6 := S ◦R6, then the principal curvatures at p vanish, that is p is
a flat point.

Problem 34 – Example for integrability conditions:

Suppose the fundamental forms of an immersion f : U → R3 satisfy

gij = δij and b11 = b12 = b21 = 0, b22(x, y) = b(x, y)

a) Derive a necessary condition from the Gauss and Codazzi equations.

b) Given the condition, the fundamental theorem for surfaces guarantees the existence of a surface
with fundamental forms g and b. What is the Gauss curvature of this surface?

c) Give two examples of such surfaces (or characterize all such immersions f : R2 → R3).

Problem 35 – Gauss curvature and Christoffel symbols:

Consider an immersion f : U2 → R3 whose Gauss curvature does not vanish identically.

a) Can all Christoffel symbols vanish identically?

b) Can the first fundamental form be constant?
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Problem 36 – Gauss curvature of the hyperbolic plane:

Suppose the upper halfplane U = {(x, y) : y > 0} parameterizes an immersion into R3 with the
conformal first fundamental form g = 1

y2 δ.

a) What are the eight Christoffel symbols Γk
ij?

Hint: We calculated Christoffel symbols for conformal parameterizations in class.

b) Suppose a subdomain of U immerses to R3 with first fundamental form g. What is its Gauss
curvature? By a theorem of Hilbert the entire hyperbolic plane (U, g) does not immerse into R3.

Problem 37 – Totally umbilic surfaces are spheres:

We want to prove that a surface Σ for which each point is umbilic is a subset of the sphere S2 or
the plane. (We do not assume constant mean curvature.)

a) Consider a parameterization (f(x, y), ν(x, y)) and differentiate the equation for a principal
curvature direction to derive the equation ν + κf ≡ C where κ(x, y) and C are constant.

b) Why is Σ contained in a plane when κ ≡ 0? Otherwise, take the equation from part a) and
show that f has constant distance 1/|κ| to some point.
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7. Non-compact embedded constant mean curvature surfaces

The goal of this section is to show the following uniqueness theorem, proved by Korevaar,

Kusner, and Solomon (1990):

Theorem 53. (i) A properly embedded annulus in R3 with constant mean curvature H ≡ 1

is a Delaunay unduloid.

(ii) There is no properly embedded plane with H ≡ 1.

Here we made use of a topological term:

Definition. A continuous map F : Ω → Rn is proper if for all R > 0 the preimage of any

ball F−1(BR) is a compact subset of Ω.

This property means that a path γ : (0, 1] → Ω which tends to the boundary, i.e., limt→0 γ(t) ∈
∂Ω, has an image path F ◦ γ tending to infinity in the sense limt→0 |F (γ)| = ∞.

Moreover, for part (i), an embedded annulus is a submanifold M ⊂ R3 which is the image

of a parameterization f : D \ {0} → R3, which is an embedding (homeomorphism onto its

image). Similarly, for the plane of part (ii), the domain of f is R2 (or the disk).

Examples. 1. If Ω is compact, then F is proper (why?).

2. One dimension lower, a spiral is a non-proper submanifold of R2, homeomorphic to the

real line.

3. Nadirashvili in the 1990’s showed that there exist complete minimal immersions into

the ball. These are highly non-proper: Any neighbourhood of the boundary of the ball

contains a non-compact piece of the surface. (In particular this is a counterexample to the

Calabi-Yau conjecture, which says that the ball cannot contain a complete surface with

non-positive Gauss curvature.)

Remark. There are counterexamples to the theorem when the embeddedness assumption is

replaced by immersedness. For (i) these are the bubbletons of Pinkall, Sterling, and Wente,

and for (ii) these are the Smyth surfaces, generalizing Enneper’s minimal surfaces (they

also have an intrinsic rotation.)

Statement (ii) is restated and proven in Thm. 58, statement (i) follows from ...

7.1. Annular ends. We will first look at ends. An annular end is a proper immersion

F : D \ {0} → R3.

Lemma 54 (Plane Separation). Let M ⊂ R3 be a properly embedded annular end with

H ≡ 1. Suppose P± are two parallel planes bounding two disjoint closed halfspaces H±. If

the distance of the planes satisfies dist(P+, P−) > 2, then at least one of the halfspaces H±

contains only compact connected components of M ∩H±.
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Note that the diameter of an unduloid end is less than 2 with 2 attained at the spherical

limit. Thus the lemma certainly holds for an end of an unduloid.

In the proof, we will refer to a concept of differential topology which we will not pursue in

depth:

Definition. The linking number link(γ, δ) of two disjoint oriented simple smooth loops

γ, δ ⊂ R3 is the following: Take an oriented smooth disk ∆ with ∂∆ = δ such that γ

intersects ∆ transversally (i.e., not tangentially) in at most finitely many points. Then

link(γ, δ) is the number of points of γ ∩∆ counted with a sign, depending on the relative

orientation of the intersection point.

It can be shown that this definition is independent of the choice of the disk ∆, and has the

following properties.

• Symmetry: link(γ, δ) = link(δ, γ)

• link(γ, δ) = 0 if there exists ∆ disjoint from γ.

• If γ is homotopic (or better homologous) to γ̃ in R3 \ δ then link(γ, δ) = link(γ̃, δ).

Proof of plane separation. On the contrary, suppose both halfspaces contain noncompact

components of M . Choose R large enough so that F (S1) ⊂ BR.

Assume the planes are parallel and symmetric to the xy-plane, P± = {z = ±C} for C > 1.

Let T be the solid torus of revolution with radius (C +1)/2 whose core curve c is the circle

of radius R + C in the xy-plane. Then T is strictly contained in the slab [Schicht] between

P+ and P−, and lies in the complement of BR.

Inside the torus T and not touching ∂T , we can place unit spheres. The strategy of the proof

is to find such a sphere which touches M from one side and with the same mean curvature

normal, hence violating the maximum principle. Thus we need to locate an appropriate

“sheet” of M , “crossing” the torus.

By the Theorem of Sard (which we will not explain here) we may alter R slightly, if

necessary, so that M is nowhere tangent to ∂T . The embeddedness of M then implies that

M ∩ ∂T consists of disjoint simple loops.

Claim (i): For R large enough there is a simple loop δ ⊂ M \ T which bounds a disk

∆ ⊂ M with link(δ, c) = 1 but link(δ, µ) = 0, where c is the core curve and µ a meridian

of the torus ∂T (e.g., µ ⊂ ∂T is a circle in a vertical plane).

Since both halfspaces contain noncompact components of M , we can increase R to a value

such that there are curves δ± ⊂ H±∩M , running from ∂BR to ∞. Let d± := F−1(δ±) ⊂ D

be the preimages, each of them approaching 0. There are compact subsets of d±, again
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denoted by d±, which can be completed to a loop

d = d+ ∪ d0 ∪ d− ∪ d∞ ⊂ D with F (d0) ⊂ BR, F (d∞) ⊂ R3 \B3R,

such that d is simple and null homotopic in D \ {0}. Then d is the boundary of a disk in

D \ {0}, and by the embeddedness of M , the image loop δ = F (d) bounds a disk ∆ ⊂ M .

For large R, since δ is disjoint from ∂T , the meridian curve µ bounds a disk disjoint from

δ, and so link(δ, µ) = 0. On the other hand, to see link(δ, c) = 1 note that F (d0) intersects

the horizontal disk bounded by c from below to the top. This proves the claim.

Claim (ii): There is a domain ∆0 ⊂ ∆∩T such that ∂∆0 ⊂ ∂T contains one boundary component
homotopic to the meridian ±µ.

To show the claim, decompose ∆∩∂T into its components γ1∪. . .∪γk, all of which are topological
circles. We first show that within the set ∂T either γi is null homotopic or homotopic to ±µ. To
see this note that the torus ∂T has fundamental group Z⊕ Z, generated by the meridian µ and
a latitude λ. So π1(γi) = (m, l) ∈ Z ⊕ Z. But then it is not hard to see that the linking number
satisfies

link(γi, δ) = m link(µ, δ) + l link(λ, δ)
(i)
= l link(λ, δ).

On the other hand, γi and δ are not linked since γi spans a disk disjoint to δ. So indeed l = 0.

By (i) also link(c, δ) = 1, and moreover δ is homotopic to
⋃
γi within ∆ \T . Thus at least one of

the γi is homotopic to ±µ.

Now consider ∆ ∩ T . The preimage of this set F−1(∆ ∩ T ) decomposes into a finite union of
domains, bounded by

⋃
γi. From one of these domains pick an innermost one, bounded by γi

with γi ∼ ±µ. We let ∆0 be the component bounded by γi. This establishes claim (ii).

We now lift T to its universal cover T̃ . Since the fundamental group π1(∆0) has trivial image in
π1(T ) we can also choose a compact lift ∆̃0 in T̃ . We claim that ∆̃0 separates the two ends of T .
Indeed, if α ⊂ T is an arc running from one end to the other, that is, α is homotopic to the lift
of the core curve c, then α meets ∆̃0, because the number of signed intersections of α with ∆̃0

agrees with the number of signed intersections of c̃ with ∆̃0, which is

link(c̃, ∂∆̃0) = link(c, ∂∆0) = link(c,±µ) = ±1.

Now place a unit sphere S with midpoint on c̃ in the component of T̃ \∆̃0 which has positive

mean curvature for the interior normal. When sliding towards ∆̃0, the first point of contact

will occur at an interior point of ∆̃0. By the maximum principle, ∆̃0 and hence M will

agree with S, which is a contradition since S is entirely contained in T , unlike M . �

24. Lecture, Thursday 8.7.10
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7.2. Height bounds.

Lemma 55. Suppose a graph M = {xn+1 = h(x1, . . . , xn)} has constant mean curvature

H > 0 and boundary values h = 0 over a compact domain in Rn. Then h(x) ≤ 1/H.

The estimate is sharp for a hemisphere of radius 1/H.

For the proof, we need a Riemannian version of the Laplace operator. Given an immersion

f : U → Rm with first fundamental form g, the operator

(94) Lgu :=
n∑

i,j=1

1
√

g
∂i

(
gij√g ∂j

)
u =

n∑
i,j=1

gij∂iju +
∑

j

(∑
i

1
√

g
∂i

(
gij√g

))
∂ju

is a linear partial differential operator of second order, as in (66). The first fundamental

form g is positive definite, and so its inverse g−1 is also positive definite: Indeed, the

eigenvalues of g−1 are inverses of the positive eigenvalues of g. Hence the operator (94) is

elliptic, and it is uniformly elliptic on each compact subset of U .

If we have two parameterizations fα, fβ of a submanifold Σ, and a function u ∈ C∞(Σ, R)

then the operators (94) agree, Lgα(u ◦ fα) = Lgβ(u ◦ fβ). See e.g., Forster, Analysis III,

p.28ff, for a proof. That is, there is an operator

∆Σ : C2(Σ, R) → C0(Σ, R),

defined by the local representations (94). It is called the Laplace-Beltrami operator. Another

way to introduce the Laplace-Beltrami operator, and to understand its specific form is in

terms of integration by parts: When we integrate the Riemannian gradient by parts we get

the Riemannian Laplacian, which is the Laplace-Beltrami operator, see the computation

in the proof.

Proof. We need two equations:

∆Mh = −nHνn+1,

∆Mνn+1 = −(κ2
1 + . . . + κ2

n)νn+1.
(95)

It is equivalent, and more common, to write the second equation in terms of the squared

L2-norm of the second fundamental form ‖B‖2, see (36).

Although it is nicer to derive the first equation from first principles, using Riemannian

terminology, it can also be checked explicitely for a graph: Then νn+1 = 1/
√

1 + |∇h|2 and

gij = δij + ∂ih∂jh; in particular, for dimension n = 2, which we are ultimately interested

in, the inverse is g−1 = 1
det g

(
g22 −g12
−g12 g11

)
and so the computation of the operator (94) is

straightforward.
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The second equation in (95) comes from the second variation formula (35) after integration by
parts. To see that, consider a particular variation, given by vertical translation of our graph, i.e.(

x, h(x) + t
)

= (x, h(x)) + ten+1.

We need two properties.
• The variation vector is en+1. If we rewrite it as a normal variation uν we have u = νn+1 (draw
a triangle!).
• The second variation of J is constant,

0 = δuνJ
(36)
=
∫

U
‖∇u‖2−u2(κ2

1 + . . .+ κ2
n) dS.

Indeed, the area of the translated graphs stays constant, and the volume is affine linear in t, hence
the second derivative vanishes.
Let us consider the first term; we let N be the interior normal to the domain U .∫

M
‖∇u‖2 dS =

∫
U

∑
ij

gij∂iu ∂ju(
√
g dx)

=
∫

U

∑
ij

∂i

(
giju ∂ju

√
g
)
− u ∂i

(√
ggij∂ju

)
dx

Div. Thm.=
∫

∂U

∑
ij

(
giju ∂ju

√
g N i

)
dA−

∫
U
u

1
√
g

∑
ij

∂i

(√
ggij∂ju

)
dS

= 0−
∫

U
u∆Σu dS

[Sorry, I realize it takes two more arguments to finish the argument: 1. The boundary integral

vanishes so that the last equality holds. 2. We have 0 =
∫
U u(∆Σu+ |B|2u) dS. We need to show

that this implies ∆Σu+|B|2u = 0. This comes from the fact a graph is strictly stable, or ∆Σ+|B|2

is positive. ]

Summing (95) we obtain

∆M

(
Hh− νn+1

)
= (κ2

1 + . . . + κ2
n − nH2)νn+1 ≥ 0,

where the inequality follows from the Cauchy-Schwarz as follows:

n
∑

κ2
i = ‖(1, . . . , 1)‖2‖(κ1, . . . , κn)‖2 ≥

〈
(1, . . . , 1), (κ1, . . . , κn)

〉2
=
(∑

κi

)2

= (nH)2

Now we apply the weak maximum principle Lemma 28 to the Laplace-Beltrami operator

L := ∆Σ. As Hh − νn+1 ≤ 0 on ∂M it gives Hh − νn+1 ≤ 0 in the interior of the

graph domain. In fact, since L is uniformly elliptic only on compact subsets (the gradient

could explode at the boundary!) we employ this argument on compact subdomains where

h ≥ ε > 0, and so obtain the above result with Hε in place of 0; letting ε → 0 then

gives the conclusion we stated. Since ν is a unit vector we conclude h ≤ 1
H

νn+1 ≤ 1
H

, as

desired. �
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We can now bound the height of any embedded compact surface with H ≡ 1:

Lemma 56 (Height Estimate). Let M ⊂ Rn+1 be a bounded embedded surface with constant

mean curvature H > 0 and ∂M ⊂ {xn+1 = 0}. Then M ⊂ {|xn+1| ≤ 2n/H}.

A sphere, punctured at the south pole, shows that the estimate is sharp. In the immersed

case, no such estimate can hold. Note that the limiting case H → 0 is also correct as a

direct application of the maximum principle shows.

Proof. We apply Alexandrov reflection w.r.t. horizontal planes {xn+1 = C} twice, once

starting from the top, once from the bottom.

To carry out Alexandrov reflection at the top, consider the component of Rn
+ \ M which

has compact closure; denote its closure with V . We let all other notation agree with the

proof of Thm. 36, in particular let a ≥ 0 again be the inf of the real numbers s > 0 such

that the reflected image of M s
+ is contained in V s

−.

As a result of Alexandrov reflection, the reflected image of Ma
+ and the remaining portion

of M in the lower half space must agree, σa(M
a
+) = Ma

−∩Rn
+. Note that by Cor. 39 each of

these two portions are graph, and so their height is bounded by the previous lemma. For

Ma
− to be graph we must have a ≤ n/H. Moreover, for Ma

+ to be graph the height of Ma
+

can be n/H at most, that is, the xn+1-component of Ma
+ is at most 2n/H.

Working similarly from below, wo find that the xn+1 component is also bounded from below

by 2n/H. �

7.3. Cylindrical boundedness of ends. Let M be a properly immersed annular end.

We call a ∈ S2 an axis vector of M if there exist pi ∈ M with |pi| → ∞ and pi/|pi| → a.

We also need a notation for solid cylinders and half-cylinders (a ∈ S2, R > 0, p ∈ R3):

Ca,R(p) :=
{
x ∈ R3 : dist(x, {p + Ra}) ≤ R

}
, C+

a,R(p) := Ca,R(p) ∩ {〈x− p, a〉 ≥ 0}

25. Lecture, Tuesday 13.7.10

The embedded surfaces of revolution with nonzero constant mean curvature, the unduloids,

have annular ends which are contained in a half-cylinder, whose radius could be chosen to

be R = 1/H. We can make a similar statement for any embedded annular end:

Proposition 57. Any properly embedded annular end M ⊂ R3 with constant mean curva-

ture H ≡ 1 is contained in some solid half-cylinder C+
a,R(p).

Remarks. 1. Embedded annular ends of minimal surfaces can be shown to be asymptotic

to a (half-)catenoid or a plane. So they are naturally contained in a half-space. On the

other hand, our statement also holds for any H 6= 0 and gives a radius R ∼ 1/H →∞ as
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H → 0. Hence in the limit, the half-cylinders of our Proposition approach the halfspaces

needed for the minimal case.

2. The proposition does not hold for the immersed case. An example for immersed annu-

lar ends is given by the Smyth surfaces which are immersed planes with constant mean

curvature. As we pointed out before, they generalize Enneper’s minimal surfaces and also

have an intrinsic rotation. In terms of this property, B. Smyth established existence of the

surfaces by solving an ODE in 1993. Their end is not contained in cylinder (I would need

to have a closer look at them to come to a more precise statement).

Proof. Suppose ∂M ⊂ BR−2 for R > 4, and pick an axis vector a ∈ S2 of M . Let Π be a

plane containing a, and let N denote its unit normal. For simplicity, let us first consider

the case that the halfspace {x : 〈x, N〉 ≤ 0} contains a noncompact part of M .

Let ΠR−2 = Π + N(R− 2) be a plane tangent to BR−2, and HR−2 be the closed halfspace

with boundary ΠR−2 disjoint to BR−2. The plane separation lemma gives that HR−2 will

contain only compact pieces of M , and since ∂M is disjoint to HR−2 these compact pieces

have boundary in ΠR−2. Lemma 56 then says that the similarly defined halfspace HR cannot

contain any points of M .

Let us now remove our additional assumption that the halfspace {〈x, N〉 ≤ 0} contains

noncompact components of M . To do so, consider tilted planes Π(ε) through the origin,

normal to the vector N(ε) := N cos ε − a sin ε where 0 < ε < π. For all these angles, the

halfspace of Π(ε) to the side of N(ε) contains the vector a, and hence contains a non-

compact component of M . So the Plane Separation Lemma, applied as before, shows that

the tilted halfspaces HR(ε) will be disjoint from M . In particular,⋃
0<ε≤π/2

HR(ε) ⊃ int HR(0) = int HR

does not contain any point of M , as claimed.

Now note that our argument works with a circle worth of normals {N ⊥ a}. Intersecting

the corresponding halfspaces gives the desired statement

M ⊂ BR ∪ C+
a,R(0) ⊂ C+

a,R(−Ra).
�

The simplest generalization of compact surfaces are surfaces with finitely many ends:

Definition. (i) We call a submanifold Σ ⊂ R3 a surface of finite topology if Σ has finite

genus g and Σ = Σ ∪ {p1, . . . , pk} is a compact submanifold.

(ii) We call a proper immersion of a surface with finite topology a surface of genus g with

k ends.
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The terminology here is consistent: An end of a surface of finite topology is a neighbourhood

of a puncture, homeomorphic to D \ {0}. In this sense, a surface of genus g with k ends

indeed has k properly immersed ends.

In contrast, a common example for surfaces with infinite topology are periodic surfaces.

Examples go back to the 19th century (the triply periodic Schwarz minimal surfaces), while

constant mean curvature examples are more recent (starting with Lawson 1970).

The following theorem gives an idea of how embedded constant mean curvature surfaces

can look like:

Theorem 58 (Meeks 1988). A surface of finite topology which is properly embedded to

R3 with constant mean curvature H > 0 has cylindrically bounded ends whose axis vectors

cannot lie in an open hemisphere. In particular,

k = 1 : a properly embedded plane is impossible,

k = 2 : a properly embedded annulus is contained in a solid cylinder

k = 3 : a properly embedded surface with three ends is contained in a slab.

Proof. As indicated above, if fα
i parameterizes a neighbourhood of a singular point pi in

Σ by D \ {0}, then the composition with the embedding ϕ gives a properly embedded

annular end Fi = ϕ ◦ fα
i . So Prop. 57 applies to show that Fi has image contained in a

solid half-cylinder C+
i := C+

ai,ri
(pi).

If we remove k disk-type open neighbourhoods of the pi from our model surface Σ, we are

left with a compact subset Σ0 ⊂ Σ. So M0 := ϕ(Σ0) is compact and hence contained in

some ball BR. Altogether this shows the containment of our surface in a set

(96) M ⊂ BR ∪
k⋃

i=1

C+
i .

To prove that the axis vectors ai cannot all be contained in an open hemisphere, let us

suppose on the contrary that for some e ∈ S2 we have 〈ai, e〉 < 0 for all i. Then all

half-cylinders C+
i point in the direction of e, and so for any c ∈ R, the intersection of

the halfspace Hc := {x : 〈x, e〉 ≥ c} with the right hand of (96) is a compact set. By

properness, M ∩ Hc is compact. Then the Height Estimate Lemma 56 gives that M is

disjoint from Hc+2. But c is arbitrary and so M can only be empty, contradiction.

Let us now use elementary geometry to prove the statements for k = 1, 2 and 3:

k = 1: One axis vector is always contained in an open halfspace, making this case impos-

sible.

k = 2: Two axis vectors must be opposite, a1 = −a2. Therefore the ends are contained

in two solid half-cylinders, C+
a1,R1

(p1) and C+
a2,R2

(p2), while the remaining compact subset
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of M is contained in a ball. These three sets are contained in a solid cylinder with axis

a1 = −a2, and suitably large radius.

k = 3: If the first two axis vectors are linearly dependent then together with the third

vector they span a 2-dimensional space W . The corresponding three solid half-cylinders,

as well as a ball containing the remaining compact portion of M , are then contained in a

sufficiently large slab parallel to W . If the first two axis vectors are not linearly dependent,

and the third does not linearly dependent on them then the three vectors lie in an open

halfspace. So again the surface is contained in slab. �

7.4. Alexandrov reflection. We now want to show that a properly embedded annulus

with H ≡ 1 is an unduloid. For this end, Korevaar, Kusner, Solomon adapt the Alexandrov

reflection technique to the non-compact setting. There are some points in their exposition

which I am not certain about and so I use some workarounds here.

Let us first restate Alexandrov reflection. Consider a properly embedded complete surface

M ⊂ R3. Then R3 \ M has two components; suppose M has constant positive mean

curvature with respect to a component with closure V (which may or may not be compact).

Let Π be a plane with unit normal e and denote planes parallel to Π by Πs := {p + se :

p ∈ Π}. Let π : R3 → Π be orthogonal projection, and Lp be the line through p ∈ Π

perpendicular to Π.

We assume that M is contained in a lower halfspace w.r.t. Π; actually it is sufficient to

assume the points p + te on Lp with t large are disjoint from V . Then we can define three

functions, measuring certain heights of M , which for non-compact M can be unbounded:

t±, α : π(V ) ⊂ Π → R ∪ {−∞},

t+(p) := sup{t ∈ R : p + te ∈ V } ∈ R, t−(p) := inf{t ≤ t+(p) : p + [t, t+(p)]e ⊂ V },

α(p) :=
t+ + t−

2

That is, in Lp ∩ V the segment {p + te : t ∈ [t−, t+]} is the topmost component. We also

write P±(p) := p + t±e for the endpoints in R3 of this line segment; it may happen that

P+(p) and P−(p) agree. The function α(p) measures the height which leads to a first contact

of M and its reflection, restricted to the line Lp.

26. Lecture, Thursday 15.7.10

Recall that a function f : S ⊂ Rn → R is upper semicontinuous [oberhalbstetig] if

lim sup
x→p

f(x) := lim
ε↘0

{sup f(x) : x ∈ S with |x− p| ≤ ε} ≤ f(p) for all p ∈ S.

(Why is it equivalent to replace “≤f(p)” by “=f(p)”?) An upper semicontinuous function

takes a maximum over each compact set of its domain (see problems).
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Clearly, the function α is continuous at a point p where M meets Lp transversally, but it

can be discontinuous if the tangent plane is vertical at one of these points. We would like

α to take a maximum over each compact set. In order to do this, we replace α by

α : π(V ) → R ∪ {−∞}, α(p) := lim sup
x→p

α(x),

which we call the Alexandrov function. To see what this means geometrically, suppose the

line Lp contains a point P in the interior of the interval [P2, P1] ⊂ Lp, such that Lp touches

∂M at P , but does not traverse it. Then the value of α is the average height of P1 and P ,

which is larger than the average height of P1 and P2.

We can now rephrase Alexandrov reflection:

Lemma 59. If for some plane Π the function α takes a local maximum m at p ∈ Π then

Πm is a plane of symmetry for M (and so α ≡ m).

Proof. We use the notation introduced in the proof of Alexandrov reflection. Reflect Mm
+

in Πm. By assumption the reflected points σm(P+) are contained in V . So

m−
(
t+(q)−m

)
≥ t−(q),

for all q ∈ π(V ) in a neighbourhood of p. Either equality holds at p and the two surfaces

intersect in Lp. Or equality only holds in the limit of a sequence q → p, so that by the

closedness of M the surfaces will intersect in the limit as well. This touching must be

tangential, with common tangent plane (else the tangent planes would intersect, and so m

would not be a maximum). The maximum principle shows the two surfaces coincide locally;

as before, we represent these surfaces as graphs over their common tangent plane to apply

the Hopf boundary maximum principle in case P+ = P−, or the interior maximum principle

otherwise. Global symmetry then follows from an openness and closedness argument, as in

the proof of Alexandrov reflection. �

We would like to apply this principle to a surface with ends. It could be, however, that

the maximum of α occurs at infinity so that a first point of contact would never arise. The

following lemma serves to rule out this case.

Let v ∈ S2 and set H− := {x : 〈x, v〉 ≤ 0}. Moreover suppose an annular end M has axis

vector a with 〈a, v〉 > 0, and ∂M ⊂ H−. We can cap off M by a disk ∆ ⊂ H− and disjoint

to M , such that M ∪∆ bounds the component to the side of the mean curvature normal,

whose closure we define to be V . Then the Alexandrov function α is defined w.r.t. any

plane containing the vector v, and it does not depend on the choice of ∆, provided we

restrict α to points p with 〈p, v〉 ≥ 0. We now maximize α perpendicularly to v:

(97) β : [0,∞) → R, β(x) := max{α(p) : p ∈ M, 〈p, v〉 = x}
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Lemma 60. Let M be a properly embedded annular end with H ≡ 1 and axis a ∈ S2, and

v ∈ S2 such that 〈a, v〉 > 0. Then for each plane Π containing a and v, either x 7→ β(x) is

strictly decreasing or else M has a mirror plane parallel to Π.

Proof. We claim that β(0) ≥ β(x) for all x > 0. Let σt(M
t
+) be the reflected upper portion

of M . Our claim is then equivalent to showing that

(98) σt(M
t
+) ∩ {x > 0} ⊂ V for all t > β(0).

Indeed, if β(0) ≥ β(x) for all x then by definition of β the reflection of all points with x > 0

stays inside V . Conversely, if the reflection stays inside V then the first point of contact is

not traversed, and so β(x) ≤ β(0).

To see that (98) holds we again resort to the idea of tilted planes. Let Πε be the plane

through the origin whose normal is N(ε) := e cos ε− v sin ε for 0 < ε < π/2. The plane Πε

decomposes M into two components, a compact one above Πε, and noncompact one below.

So these two components cannot be mirror images of one another, and thus Alexandrov

reflection with respect to planes parallel to Πε must give a first contact at the boundary.

We conclude, with notation similar to (98),

(99) σε
t (M

t,ε
+ ) ∩ {x > 0} ⊂ V for all t ≥ βε(0).

Here, by translation of the end, we may assume that ∂M is disjoint from x > 0 for all

small angles ε ≥ 0, and M t,ε denotes the upper component of M when intersecting with

R3 \ Πε.

For ε → 0 the tilted version (99) implies (98), provided we know

lim sup
ε→0

βε(0) ≤ β(0).

Thus we need to know that βε is upper semicontinuous in ε:

If p(ε) ∈ Π(ε) → p ∈ Π as ε → 0 then lim sup
ε→0

βε(ε) ≤ β(0).

To see this, consider a sequence of points Qε
1, Q

ε
2 whose common projection q(ε) converges

to p ⊥ a as ε → 0, such that 1
2
(Qε

1 +Qε
2) converges to lim supε→0 βε(ε). Since M is closed, a

subsequence of Qε
1, Q

ε
2 converges to (not necessarily distinct) points P1, P2 ∈ M projecting

to p. By the closedness of V the interval [P1, P2] is contained in V , and so β(0) cannot

be smaller than the limit. Since the sequence was chosen to approach lim supε→0 βε(ε), no

other sequence can have a smaller limit.

Finally, the same argument can be applied for any x0 replacing 0, which verifies β(x0) ≥
β(x) for x > x0. Hence β is decreasing and so by Lemma 59 there must be a symmetry

plane.
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To show that β is strictly decreasing note that we need to rule out intervals on which β is

constant. But any point in the interior of such an interval gives rise to a local maximum

of α, and so by the Alexandrov Reflection Lemma 59 this is impossible. �

To state the next result in compact form, the following terminology is useful. It describes

consequences of Alexandrov reflection, namely that a symmetry plane decomposes the

surface into two graphs, compare Cor. 39.

Definition. We call a surface Mn ⊂ Rn Alexandrov symmetric if there is a hyperplane Π

such that M \ Π has two components M+ and M−, which are

• mirror images of one another, such that

• each half M± is a graph and

• ν(M±) ⊂ S2
±.

Example. A figure 8 is a mirror symmetric curve in R2 which is not Alexandrov symmetric.

Theorem 61. Let M be an embedded surface of finite topology with k ends and genus g.

Suppose M has constant mean curvature H > 0.

(i) If k = 2, or if k ≥ 3 and M is contained in a solid cylinder, then M is a Delaunay

surface; in particular k = 2 and g = 0.

(ii) If k = 3, or k ≥ 4 and M is contained in a halfspace, then M is Alexandrov symmetric

and so contained in a slab.

Proof. (i) We can assume that M is contained in a solid cylinder in any case: If M has

k = 2 ends this follows from Meeks’ Theorem 58(ii). Let a be the axis of the cylinder,

choose e ⊥ a, and consider the plane Π = e⊥. By Lemma 60 the function β then is strictly

monotonically decreasing for x > 0 and increasing for x < 0, and so has a maximum at

x = 0. Thus also α takes a maximum, and by Lemma 59 this in turn implies a symmetry

plane.

Now apply the same argument to all vectors e ⊥ a to obtain a symmetry plane perpen-

dicular to e. All symmetry planes must intersect in an axis parallel to a: Otherwise the

reflection planes would generate a non-compact orbit, see the proof of Lemma 37.

(ii) We can assume M is contained in a halfspace in any case: If k = 3 then this property

is implied by Meeks’ Theorem 58(iii). Let Π = e⊥ be a plane parallel to the halfspace

boundary. By Thm. 58(iii) not all ends can be contained in an open halfspace. Thus there

exists an end with horizontal axis a1 ∈ Π, and there exists at least one more end with

a2 ∈ Π such that 〈a1, a2〉 < 0. We now consider the function β as in (97), with respect to

v := a1. Since M has no boundary we can can extend the domain of β to all x ∈ R.
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If M does not admit a symmetry plane parallel to Π, the function β is decaying as x → ±∞.

So β must attain a maximum and Lemma 59 this implies, nevertheless, that M has a

symmetry plane parallel to Π. �

We stop here with the exposition of the results obtained by Korevaar, Kusner, Solomon.

There are two more statements on properly embedded annular ends in their paper, whose

proof requires further machinery:

• The ends converge to Delaunay unduloids in distance when we go to infinity,

• and the convergence is shown to be exponentially fast.

We remark that all results of this section hold not only for embedded surfaces, but for

Alexandrov embedded immersions.

Let us comment on existence results for embedded surfaces of finite topology with constant

mean curvature 1. It is hard to establish embeddedness for constructed examples, while

Alexandrov embeddedness is usually much simpler to establish. Indeed, in continuous fa-

milies of surfaces embeddedness can be lost, while Alexandrov embeddedness is preserved.

That makes it a difficult quantitative problem to decide on embeddedness of a not expli-

citely given surface. The following results are in the Alexandrov embedded class:

1. Kapouleas constructed such surfaces for all g ≥ 0 and k ≥ 3 in 1990.

2. Grosse-Brauckmann, Kusner, Sullivan in 2003 classified all examples with g = 0 and

k = 3, as well as all the Alexandrov symmetric examples with g = 0 and k ≥ 4 (2007).

Let us finally mention two open problems related to our topic which I know from Harold

Rosenberg:

1. Suppose M is an embedded surface of infinite topology and with constant mean curvature

contained in a slab. Is M Alexandrov symmetric?

2. Suppose M is an embedded surface, contained in a slab, with one boundary loop on

each of the two bounding planes. Does the genus of M necessarily vanish?

7.5. Problems.

Problem 38 – Properness:

a) Prove that the composition of proper maps is proper.

b) What does it mean for a continuous function f : R → R to be proper?

c) Show that for a compact domain A, a continuous map f : A→ Rn is always proper.

d) Give an example for a homeomorphism ϕ : Bn → Rn; it is useful to construct a homeomor-
phism ψ : (0, 1) → (0,∞) first. Prove that if f : Rn → Rn is proper, then f ◦ ϕ : Bn → Rn is
proper. That is, it makes no difference if we define a properly embedded plane as the image
of D or R2.
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e) More advanced: Prove that the following two characterizations of the properness of a map
F : S ⊂ Rm → Rn for an arbitrary domain S are equivalent.
• Compact sets K ⊂ Rn have compact preimage F−1(K) ⊂ S,
• For all paths γ which leave any compact subset the image path c = F ◦ γ also leaves any
compact subset.

Problem 39 – Laplace-Beltrami operator and mean curvature of a graph:

a) Write down the Laplace-Beltrami operator for polar coordinates f : (0,∞) × R, f(r, ϕ) =
(r cosϕ, r sinϕ).

b) Let u ∈ C∞(Ωn,R) and consider the graph M = {(x, u(x)) : x ∈ Ω}. Check the equation
∆M (x, u(x)) = −nH(x, u(x)), where ∆M is the Laplace-Beltrami operator for the graph.

Problem 40 – Upper semicontinuity:

a) Give a simple example of an upper semicontinuous function from R to R, and one with many
discontinuities.

b) Given a monotone function on R, prove that the number of discontinuities is countable.

c) Prove that an upper semincontinuous function takes a maximum on each compact subset
K ⊂ R.

Problem 41 – Alexandrov reflection for minimal surfaces:

Prove that a properly embedded minimal surface with two ends ϕ : Σg \ {p1, p2} → R3, such that
the two ends are asymptotically catenoids must be a catenoid. You can assume convergence of
the surface together with its normal when |x| → ∞. In particular, Σ must have genus g = 0.

a) Use force balancing to show that the axes of the two catenoid ends are parallel (you might as
well assume this property). By the way, what does this imply for the growth rates?

b) Apply Alexandrov reflection.

Remarks: 1. The asymptotics to catenoids is a consequence of the Weierstrass representation

formulas.

2. The statement was first proved by Rick Schoen (1983).


